Model-based redesign of global transcription regulation

Synthetic biology aims to the design or redesign of biological systems. In particular, one possible goal could be the rewiring of the transcription regulation network by exchanging the endogenous promoters. To achieve this objective, we have adapted current methods to the inference of a model based on ordinary differential equations that is able to predict the network response after a major change in its topology. Our procedure utilizes microarray data for training. We have experimentally validated our inferred global regulatory model in Escherichia coli by predicting transcriptomic profiles under new perturbations. We have also tested our methodology in silico by providing accurate predictions of the underlying networks from expression data generated with artificial genomes. In addition, we have shown the predictive power of our methodology by obtaining the gene profile in experimental redesigns of the E. coli genome, where rewiring the transcriptional network by means of knockouts of master regulators or by upregulating transcription factors controlled by different promoters. Our approach is compatible with most network inference methods, allowing to explore computationally future genome-wide redesign experiments in synthetic biology.

[1]  Jacob Cohen,et al.  Applied multiple regression/correlation analysis for the behavioral sciences , 1979 .

[2]  V. Klema LINPACK user's guide , 1980 .

[3]  Jack Dongarra,et al.  LINPACK Users' Guide , 1987 .

[4]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[5]  D. Altman,et al.  Statistics Notes: Diagnostic tests 2: predictive values , 1994, BMJ.

[6]  D. Altman,et al.  Statistics Notes: Diagnostic tests 1: sensitivity and specificity , 1994 .

[7]  R Grosschedl,et al.  Functional interaction of beta-catenin with the transcription factor LEF-1. , 1996, Nature.

[8]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[9]  Michael Kühl,et al.  Functional interaction of β-catenin with the transcription factor LEF-1 , 1996, Nature.

[10]  Ron Shamir,et al.  Clustering Gene Expression Patterns , 1999, J. Comput. Biol..

[11]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[14]  I S Kohane,et al.  Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[15]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[16]  Carsten O. Daub,et al.  The mutual information: Detecting and evaluating dependencies between variables , 2002, ECCB.

[17]  Yaniv Ziv,et al.  Revealing modular organization in the yeast transcriptional network , 2002, Nature Genetics.

[18]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[19]  Chiara Sabatti,et al.  Co-expression pattern from DNA microarray experiments as a tool for operon prediction , 2002, Nucleic Acids Res..

[20]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[21]  Peter D. Karp,et al.  The EcoCyc Database , 2002, Nucleic Acids Res..

[22]  A. Kimura,et al.  Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing , 2002, Nature Genetics.

[23]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[24]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[25]  Carsten O. Daub,et al.  Estimating mutual information using B-spline functions – an improved similarity measure for analysing gene expression data , 2004, BMC Bioinformatics.

[26]  S. Sathiya Keerthi,et al.  A simple and efficient algorithm for gene selection using sparse logistic regression , 2003, Bioinform..

[27]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[28]  Dirk Husmeier,et al.  Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks , 2003, Bioinform..

[29]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[30]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[31]  Ziv Bar-Joseph,et al.  Analyzing time series gene expression data , 2004, Bioinform..

[32]  Paul P. Wang,et al.  Advances to Bayesian network inference for generating causal networks from observational biological data , 2004, Bioinform..

[33]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[34]  M. Elowitz,et al.  Reconstruction of genetic circuits , 2005, Nature.

[35]  Katherine H. Huang,et al.  A novel method for accurate operon predictions in all sequenced prokaryotes , 2005, Nucleic acids research.

[36]  J. Collins,et al.  Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks , 2005, Nature Biotechnology.

[37]  V. Stewart,et al.  Fnr-, NarP- and NarL-Dependent Regulation of Transcription Initiation from the Haemophilus influenzae Rd napF (Periplasmic Nitrate Reductase) Promoter in Escherichia coli K-12 , 2005, Journal of bacteriology.

[38]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[39]  Julio Collado-Vides,et al.  RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions , 2005, Nucleic Acids Res..

[40]  David J. Reiss,et al.  Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks , 2006, BMC Bioinformatics.

[41]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[42]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[43]  Kevin Kontos,et al.  Information-Theoretic Inference of Large Transcriptional Regulatory Networks , 2007, EURASIP J. Bioinform. Syst. Biol..

[44]  João Ricardo Sato,et al.  Modeling gene expression regulatory networks with the sparse vector autoregressive model , 2007, BMC Systems Biology.

[45]  Florian Steinke,et al.  Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models , 2006, BMC Systems Biology.

[46]  D. di Bernardo,et al.  How to infer gene networks from expression profiles , 2007, Molecular systems biology.

[47]  James Long,et al.  Synthetic microarray data generation with RANGE and NEMO , 2008, Bioinform..

[48]  Jeremiah J. Faith,et al.  Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata , 2007, Nucleic Acids Res..

[49]  Jean-Philippe Vert,et al.  SIRENE: supervised inference of regulatory networks , 2008, ECCB.

[50]  E. Raineri,et al.  Evolvability and hierarchy in rewired bacterial gene networks , 2008, Nature.

[51]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.