Non-Haar $p$-adic wavelets and their application to pseudo-differential operators and equations

In this paper a countable family of new compactly supported {\em non-Haar} $p$-adic wavelet bases in ${\cL}^2(\bQ_p^n)$ is constructed. We use the wavelet bases in the following applications: in the theory of $p$-adic pseudo-differential operators and equations. Namely, we study the connections between wavelet analysis and spectral analysis of $p$-adic pseudo-differential operators. A criterion for a multidimensional $p$-adic wavelet to be an eigenfunction for a pseudo-differential operator is derived. We prove that these wavelets are eigenfunctions of the fractional operator. In addition, $p$-adic wavelets are used to construct solutions of linear and semi-linear pseudo-differential equations. Since many $p$-adic models use pseudo-differential operators (fractional operator), these results can be intensively used in these models.

[1]  V. M. Shelkovich,et al.  Pseudo‐Differential Operators in the p‐Adic Lizorkin Space , 2006 .

[2]  Igor Volovich,et al.  p-adic quantum mechanics , 1989 .

[3]  S. V. Kozyrev,et al.  Application of p-adic analysis to models of breaking of replica symmetry , 1999 .

[4]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[5]  Edward Witten,et al.  ADELIC STRING AMPLITUDES , 1987 .

[6]  T. Wolff Some constructions with solutions of variable coefficient elliptic equations , 1993 .

[7]  Y. Meyer Ondelettes et fonctions splines , 1987 .

[8]  Localization in space for a free particle in ultrametric quantum mechanics , 2006 .

[9]  I. Volovich,et al.  On the adelic string amplitudes , 1988 .

[10]  David R. Larson,et al.  Wavelets, frames and operator theory : Focused Research Group Workshop on Wavelets, Frames and Operator Theory, January 15-21, 2003, University of Maryland, College Park, Maryland , 2004 .

[11]  V. M. Shelkovich,et al.  p-Adic Haar Multiresolution Analysis and Pseudo-Differential Operators , 2007, 0705.2294.

[12]  Igor Volovich,et al.  p-adic string , 1987 .

[13]  Anatoly N. Kochubei,et al.  Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .

[14]  V A Avetisov,et al.  p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes , 2002 .

[15]  A. Khrennikov,et al.  Wavelets on ultrametric spaces , 2005 .

[16]  Gerco Onderwater,et al.  AIP Conf. Proc. , 2009 .

[17]  BRST-Invariant Algebra of Constraints in Terms of Commutators and Quantum Antibrackets , 2003, hep-th/0301043.

[18]  A. Khrennikov Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena , 2004 .

[19]  S. Albeverio,et al.  p-ADIC MULTIRESOLUTION ANALYSES , 2008, 0810.1147.

[20]  Robert L. Benedetto Examples of wavelets for local fields , 2003 .

[21]  곽순섭,et al.  Generalized Functions , 2006, Theoretical and Mathematical Physics.

[22]  Y. Meyer Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .

[23]  A. Khrennikov,et al.  LOCALLY CONVEX SPACES OF VECTOR-VALUED DISTRIBUTIONS WITH MULTIPLICATIVE STRUCTURES , 2002 .

[24]  W. A. Zuniga-Galindo Fundamental Solutions of Pseudo-Differential Operators over p-Adic Fields. , 2003 .

[25]  A. Khrennikov,et al.  Pseudodifferential operators on ultrametric spaces and ultrametric wavelets , 2004 .

[26]  S. Albeverio,et al.  Multidimensional ultrametric pseudodifferential equations , 2007, 0708.2074.

[27]  Non-haar p-adic wavelets and pseudodifferential operators , 2008 .

[28]  Nondegenerate ultrametric diffusion , 2004, cond-mat/0403440.

[29]  S. V. Kozyrev,et al.  p-Adic Pseudodifferential Operators and p-Adic Wavelets , 2003, math-ph/0303045.

[30]  V. A. Avetisov,et al.  Application of p-adic analysis to models of spontaneous breaking of the replica symmetry , 2008 .

[31]  Andrei Khrennikov,et al.  Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .

[32]  M. Taibleson Harmonic analysis onn-dimensional vector spaces over local fields , 1968 .

[33]  S.V.Kozyrev p-Adic pseudodifferential operators and p-adic wavelets , 2003, math-ph/0303045.

[34]  J. Benedetto,et al.  A wavelet theory for local fields and related groups , 2003, math/0312036.

[35]  W. A. Zuniga-Galindo,et al.  Pseudo-differential equations connected with p-adic forms and local zeta functions , 2004, Bulletin of the Australian Mathematical Society.

[36]  M. H. Taibleson,et al.  Fourier Analysis on Local Fields. , 1975 .

[37]  Fundamental solutions of pseudodifferential equations connected with $ p$-adic quadratic forms , 1998 .

[38]  Andrei Khrennikov,et al.  p-adic refinable functions and MRA-based wavelets , 2007, J. Approx. Theory.

[39]  $p$-Adic multidimensional wavelets and their application to $p$-adic pseudo-differential operators , 2006, math-ph/0612049.

[40]  Sergio Albeverio,et al.  Harmonic Analysis in the p-Adic Lizorkin Spaces: Fractional Operators, Pseudo-Differential Equations, p-Adic Wavelets, Tauberian Theorems , 2006 .

[41]  S. Albeverio,et al.  p-Adic Multiresolution Analysis and Wavelet Frames , 2008, 0802.1079.

[42]  S. Semmes Topological Vector Spaces , 2003 .

[43]  Sergei Kozyrev,et al.  Wavelet analysis as a p-adic spectral analysis , 2008 .

[44]  Nguyen Minh Chuong,et al.  The Cauchy problem for a class of pseudodifferential equations over p-adic field☆ , 2008 .