Along-Track Multistatic Synthetic Aperture Radar Formations of Minisatellites

The paper analyses an along-track multistatic Synthetic Aperture Radar (SAR) formation. The formation aims at achieving a high azimuth resolution maintaining at the same time a large swath width. The case with one transmitting sensor and all receiving is analyzed (Single Input Multiple Output, SIMO). An effective and novel reconstruction, in the two-dimensional frequency domain is introduced that is able to keep low the azimuth ambiguity and achieve a recombination gain close to the theoretical one. Degradation of the system performance due to the loss of the control of formation position is analyzed using probabilistic considerations. Moreover, some innovative methods to mitigate the loss of optimality are introduced and evaluated using simulations. Finally, considerations on the impact of the across-track non zero baseline are discussed.

[1]  M. A. Brown,et al.  Wide-swath SAR , 1992 .

[2]  Gerhard Krieger,et al.  SAR signal reconstruction from non-uniform displaced phase centre sampling , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Jianwei Wan,et al.  An Improved Azimuth Reconstruction Method for Multichannel SAR Using Vandermonde Matrix , 2017, IEEE Geoscience and Remote Sensing Letters.

[4]  Gerhard Krieger,et al.  Errata: Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009 .

[5]  Alberto Moreira,et al.  Analysis of Geometrical Approximations in Signal Reconstruction Methods for Multistatic SAR Constellations With Large Along-Track Baseline , 2018, IEEE Geoscience and Remote Sensing Letters.

[6]  Nathan A. Goodman,et al.  Processing of multiple-receiver spaceborne arrays for wide-area SAR , 2002, IEEE Trans. Geosci. Remote. Sens..

[7]  Richard Bamler,et al.  Phase statistics and decorrelation in SAR interferograms , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[8]  Davide D'Aria,et al.  High-Resolution Spaceborne SAR Focusing by SVD-Stolt , 2007, IEEE Geoscience and Remote Sensing Letters.

[9]  Ulrike M. Bohlmann Space 4.0 , 2020 .

[10]  Christoph H. Gierull,et al.  Signal Reconstruction with Range Migration Correction for High-Resolution Wide-Swath SAR Systems , 2014 .

[11]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[12]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[13]  Fabio Rocca,et al.  The wavenumber shift in SAR interferometry , 1994, IEEE Trans. Geosci. Remote. Sens..

[14]  Ishuwa C. Sikaneta,et al.  MIMO SAR Processing for Multichannel High-Resolution Wide-Swath Radars , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Gerhard Krieger,et al.  Multichannel Azimuth Processing in ScanSAR and TOPS Mode Operation , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Maurice Martin,et al.  TechSat 21: formation design, control, and simulation , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[17]  F. Rocca,et al.  InSAR Principles-Guidelines for SAR Interferometry Processing and Interpretation , 2007 .

[18]  J. Aguttes The SAR train concept: required antenna area distributed over N smaller satellites, increase of performance by N , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[19]  Mihai Sima,et al.  Low Cost Radiation Hardened Software and Hardware Implementation for CubeSats , 2018 .

[20]  Gianfranco Fornaro,et al.  Minimum mean square error space-varying filtering of interferometric SAR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[21]  Werner Wiesbeck,et al.  Digital beamforming in SAR systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[22]  Gerhard Krieger,et al.  Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Yahya Rahmat-Samii,et al.  Radar Technologies for Earth Remote Sensing From CubeSat Platforms , 2018, Proceedings of the IEEE.

[24]  Gerhard Krieger,et al.  Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling , 2004, IEEE Geoscience and Remote Sensing Letters.

[25]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[26]  Davide D'Aria,et al.  Focusing bistatic synthetic aperture radar using dip move out , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Richard Bamler,et al.  A comparison of range-Doppler and wavenumber domain SAR focusing algorithms , 1992, IEEE Trans. Geosci. Remote. Sens..

[28]  Ishuwa C. Sikaneta,et al.  Optimum Signal Processing for Multichannel SAR: With Application to High-Resolution Wide-Swath Imaging , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Josef Mittermayer,et al.  Conceptual studies for exploiting the TerraSAR-X dual receive antenna , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[30]  Gerhard Krieger,et al.  Addressing the Terrain Topography in Distributed SAR Imaging , 2019, 2019 International Radar Conference (RADAR).

[31]  Zheng Bao,et al.  Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems , 2005, IEEE Geosci. Remote. Sens. Lett..