Rotation symmetric Boolean functions - Count and cryptographic properties
暂无分享,去创建一个
[1] N.J.A. Sloane,et al. On Single-Deletion-Correcting Codes , 2002, math/0207197.
[2] Toshinobu Kaneko,et al. Higher Order Differential Attack Using Chosen Higher Order Differences , 1998, Selected Areas in Cryptography.
[3] Claude Carlet. On the Coset Weight Divisibility and Nonlinearity of Resilient and Correlation-Immune Functions , 2001, SETA.
[4] O. S. Rothaus,et al. On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.
[5] Martin Rötteler,et al. On Homogeneous Bent Functions , 2001, AAECC.
[6] Susan Stepney,et al. Evolving Boolean Functions Satisfying Multiple Criteria , 2002, INDOCRYPT.
[7] K. T. Arasu,et al. On single-deletion-correcting codes , 2002 .
[8] Thomas Siegenthaler,et al. Correlation-immunity of nonlinear combining functions for cryptographic applications , 1984, IEEE Trans. Inf. Theory.
[9] Martin Rötteler,et al. Homogeneous Bent Functions, Invariants, and Designs , 2002, Des. Codes Cryptogr..
[10] Palash Sarkar,et al. New Constructions of Resilient and Correlation Immune Boolean Functions Achieving Upper Bound on Nonlinearity , 2001, Electron. Notes Discret. Math..
[11] Josef Pieprzyk,et al. Fast Hashing and Rotation-Symmetric Functions , 1999 .
[12] Joos Vandewalle,et al. Propagation Characteristics of Boolean Functions , 1991, EUROCRYPT.
[13] Josef Pieprzyk,et al. Rotation-Symmetric Functions and Fast Hashing , 1998, J. Univers. Comput. Sci..
[14] James L. Massey,et al. A spectral characterization of correlation-immune combining functions , 1988, IEEE Trans. Inf. Theory.
[15] Tianbing Xia,et al. Homogeneous bent functions of degree n in 2n variables do not exist for nge3 , 2004, Discret. Appl. Math..
[16] Eric Filiol,et al. Highly Nonlinear Balanced Boolean Functions with a Good Correlation-Immunity , 1998, EUROCRYPT.
[17] Palash Sarkar,et al. Construction of Nonlinear Boolean Functions with Important Cryptographic Properties , 2000, EUROCRYPT.
[18] Thomas W. CusickPantelimon Stùanicùa. Fast Evaluation, Weights and Nonlinearity of Rotation-Symmetric Functions , 2000 .