Global Minimum for Active Contour Models: A Minimal Path Approach

A new boundary detection approach for shape modeling is presented. It detects the global minimum of an active contour model's energy between two points. Initialization is made easier and the curve cannot be trapped at a local minimum by spurious edges. We modify the "snake" energy by including the internal regularization term in the external potential term. Our method is based on the interpretation of the snake as a path of minimal length in a Riemannian metric, or as a path of minimal cost. We then make use of a new efficient numerical method to find the shortest path which is the global minimum of the energy among all paths joining the two end points. The method is extended to closed contours, given only one point on the objects boundary by using a topology-based saddle search routine. We show examples of our method applied to real aerial and medical images.

[1]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[2]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[4]  Ron Kimmel,et al.  Finding The Shortest Paths on Surfaces by Fast Global Approximation and Precise Local Refinement , 1996, Int. J. Pattern Recognit. Artif. Intell..

[5]  Benjamin B. Kimia,et al.  Image segmentation by reaction-diffusion bubbles , 1995, Proceedings of IEEE International Conference on Computer Vision.

[6]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Demetri Terzopoulos,et al.  Medical Image Segmentation Using Topologically Adaptable Snakes , 1995, CVRMed.

[8]  Guillermo Sapiro,et al.  Three Dimensional Object Modeling via Minimal Surfaces , 1996, ECCV.

[9]  Guillermo Sapiro,et al.  Vector-valued active contours , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Demetri Terzopoulos,et al.  Matching deformable models to images: Direct and iterative solutions , 1980 .

[11]  Alfred M. Bruckstein,et al.  Shape From Shading , 2006, Handbook of Mathematical Models in Computer Vision.

[12]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[13]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[14]  Gábor Székely,et al.  Making snakes converge from minimal initialization , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[15]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[16]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[17]  William A. Barrett,et al.  Intelligent scissors for image composition , 1995, SIGGRAPH.

[18]  David N. Levin,et al.  Brownian strings: segmenting images with stochastically deformable contours , 1994, Other Conferences.

[19]  E. Thiel,et al.  Chamfer masks: discrete distance functions, geometrical properties and optimization , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[20]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Kazuhiko Yamamoto,et al.  Motion tracking of deformable objects based on energy minimization using multiscale dynamic programming , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[22]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  J. Tsitsiklis Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..

[24]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[25]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[26]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[28]  Jerry L. Prince,et al.  Adaptive active contour algorithms for extracting and mapping thick curves , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Baba C. Vemuri,et al.  Evolutionary Fronts for Topology-Independent Shape Modeling and Recoveery , 1994, ECCV.

[30]  Donald Geman,et al.  An Active Testing Model for Tracking Roads in Satellite Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Ross T. Whitaker,et al.  Algorithms for implicit deformable models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[32]  James A. Sethian,et al.  Theory, algorithms, and applications of level set methods for propagating interfaces , 1996, Acta Numerica.

[33]  P. Danielsson Euclidean distance mapping , 1980 .

[34]  Ron Kimmel,et al.  Fast Marching Methods for Computing Distance Maps and Shortest Paths , 1996 .

[35]  Josiane Zerubia,et al.  New prospects in line detection for remote sensing images , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[36]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[37]  David W. Payton,et al.  Planning and reasoning for autonomous vehicle control , 1987 .

[38]  Ron Kimmel,et al.  Finding shortest paths on surfaces by fast global approximation and precise local refinement , 1995, Other Conferences.

[39]  P. Dupuis,et al.  An Optimal Control Formulation and Related Numerical Methods for a Problem in Shape Reconstruction , 1994 .

[40]  Richard Szeliski,et al.  Curvature and continuity control in particle-based surface models , 1993, Optics & Photonics.

[41]  Martin A. Fischler,et al.  Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique☆ , 1981 .

[42]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[43]  Robert E. Kalaba,et al.  Dynamic Programming and Modern Control Theory , 1966 .

[44]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[45]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[46]  P. Cinquin,et al.  Dynamic Segmentation : Detecting Complex Topology 3D-object , 1991, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991.

[47]  Jayant Shah,et al.  A common framework for curve evolution, segmentation and anisotropic diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[48]  R. Malladi,et al.  A Unified Framework for Shape Segmentation, Representation, and Recognition , 1994 .

[49]  Ugo Montanari,et al.  On the optimal detection of curves in noisy pictures , 1971, CACM.

[50]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Piet W. Verbeek,et al.  Shading from shape, the eikonal equation solved by grey-weighted distance transform , 1990, Pattern Recognit. Lett..

[52]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[54]  Frederic Fol Leymarie,et al.  Tracking Deformable Objects in the Plane Using an Active Contour Model , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Sharat Chandran,et al.  Global minima via dynamic programming: energy minimizing active contours , 1991, Optics & Photonics.

[56]  Gábor Székely,et al.  Estimating shortest paths and minimal distances on digitized three-dimensional surfaces , 1993, Pattern Recognit..

[57]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .