ELP-M2: An Efficient Model for Mining Least Patterns from Data Repository

Most of the algorithm and data structure facing a computational problem when they are required to deal with a highly sparse and dense dataset. Therefore, in this paper we proposed a complete model for mining least patterns known as Efficient Least Pattern Mining Model (ELP-M2) with LP-Tree data structure and LP-Growth algorithm. The comparative study is made with the well-know LP-Tree data structure and LP-Growth algorithm. Two benchmarked datasets from FIMI repository called Kosarak and T40I10D100K were employed. The experimental results with the first and second datasets show that the LP-Growth algorithm is more efficient and outperformed the FP-Growth algorithm at 14% and 57%, respectively.

[1]  Jemal H. Abawajy,et al.  IPMA: Indirect Patterns Mining Algorithm , 2013, Advanced Methods for Computational Collective Intelligence.

[2]  Young-Koo Lee,et al.  CP-Tree: A Tree Structure for Single-Pass Frequent Pattern Mining , 2008, PAKDD.

[3]  Mustafa Mat Deris,et al.  Mining Significant Least Association Rules Using Fast SLP-Growth Algorithm , 2010, AST/UCMA/ISA/ACN.

[4]  J. Yu,et al.  Efficient Mining of Frequent Patterns Using Ascending Frequency Ordered Prefix-Tree , 2004, Data Mining and Knowledge Discovery.

[5]  Mustafa Mat Deris,et al.  Scalable Technique to Discover Items Support from Trie Data Structure , 2012, ICICA.

[6]  Gillian Dobbie,et al.  Automatic Item Weight Generation for Pattern Mining and its Application , 2011, Int. J. Data Warehous. Min..

[7]  Carson Kai-Sang Leung,et al.  A landmark-model based system for mining frequent patterns from uncertain data streams , 2011, IDEAS '11.

[8]  Yun Sing Koh,et al.  Finding Non-Coincidental Sporadic Rules Using Apriori-Inverse , 2006, Int. J. Data Warehous. Min..

[9]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .

[10]  Weiru Chen,et al.  Graph-Based Modelling of Concurrent Sequential Patterns , 2010 .

[11]  Jia-Ling Koh,et al.  An Efficient Approach for Maintaining Association Rules Based on Adjusting FP-Tree Structures1 , 2004, DASFAA.

[12]  Mustafa Mat Deris,et al.  A soft set approach for association rules mining , 2011, Knowl. Based Syst..

[13]  David Taniar,et al.  ODAM: An optimized distributed association rule mining algorithm , 2004, IEEE Distributed Systems Online.

[14]  Xin Li,et al.  A Fast Algorithm for Maintenance of Association Rules in Incremental Databases , 2006, ADMA.

[15]  Mustafa Mat Deris,et al.  WLAR-Viz: Weighted Least Association Rules Visualization , 2012, ICICA.

[16]  Ke Wang,et al.  Pushing Support Constraints Into Association Rules Mining , 2003, IEEE Trans. Knowl. Data Eng..

[17]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD 2000.

[18]  Mustafa Mat Deris,et al.  An Alternative Measure for Mining Weighted Least Association Rule and Its Framework , 2011, ICSECS.

[19]  Stephen S.-T. Yau,et al.  Efficient association rule mining among infrequent items , 2005 .

[20]  Mustafa Mat Deris,et al.  Visualizing the Construction of Incremental Disorder Trie Itemset Data Structure (DOSTrieIT) for Frequent Pattern Tree (FP-Tree) , 2011, IVIC.

[21]  Keun Ho Ryu,et al.  Mining association rules on significant rare data using relative support , 2003, J. Syst. Softw..

[22]  Tutut Herawan,et al.  CNAR-M: A Model for Mining Critical Negative Association Rules , 2012, ISICA.

[23]  M. Sulaiman Khan,et al.  Finding Associations in Composite Data Sets: The CFARM Algorithm , 2011, Int. J. Data Warehous. Min..

[24]  Iraklis Varlamis,et al.  Mining Frequent Generalized Patterns for Web Personalization in the Presence of Taxonomies , 2010, Int. J. Data Warehous. Min..

[25]  Mustafa Mat Deris,et al.  Mining significant association rules from educational data using critical relative support approach , 2011 .

[26]  Osmar R. Zaïane,et al.  Incremental mining of frequent patterns without candidate generation or support constraint , 2003, Seventh International Database Engineering and Applications Symposium, 2003. Proceedings..

[27]  Mustafa Mat Deris,et al.  Soft Set Approach for Maximal Association Rules Mining , 2009, FGIT-DTA.

[28]  Tomasz Imielinski,et al.  Database Mining: A Performance Perspective , 1993, IEEE Trans. Knowl. Data Eng..

[29]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[30]  Mustafa Mat Deris,et al.  Scalable Model for Mining Critical Least Association Rules , 2010, ICICA.

[31]  K. Duraiswamy,et al.  A Novel preprocessing Algorithm for Frequent Pattern Mining in Multidatasets , 2011 .

[32]  P. Krishna Reddy,et al.  An Improved Frequent Pattern-growth Approach to Discover Rare Association Rules , 2009, KDIR.

[33]  David Taniar,et al.  Exception rules in association rule mining , 2008, Appl. Math. Comput..

[34]  Tzung-Pei Hong,et al.  Incrementally fast updated frequent pattern trees , 2008, Expert Syst. Appl..

[35]  Carson Kai-Sang Leung,et al.  Frequent Pattern Mining from Time-Fading Streams of Uncertain Data , 2011, DaWaK.

[36]  Jemal H. Abawajy,et al.  EFP-M2: Efficient Model for Mining Frequent Patterns in Transactional Database , 2012, ICCCI.

[37]  Yun Sing Koh,et al.  Finding Sporadic Rules Using Apriori-Inverse , 2005, PAKDD.

[38]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[39]  Mustafa Mat Deris,et al.  SMARViz: Soft Maximal Association Rules Visualization , 2009, IVIC.

[40]  Tutut Herawan,et al.  Mining Interesting Association Rules of Student Suffering Mathematics Anxiety , 2011, ICSECS.

[41]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[42]  P. V. G. D. Prasad Reddy,et al.  Batch Processing for Incremental FP-tree Construction , 2010 .

[43]  Zailani Abdullah,et al.  Mining highly correlated least association rules using scalable trie-based algorithm , 2012 .

[44]  Kate A. Smith,et al.  Redundant association rules reduction techniques , 2005, Int. J. Bus. Intell. Data Min..

[45]  Mustafa Mat Deris,et al.  Extracting highly positive association rules from students’ enrollment data , 2011 .

[46]  Keun Ho Ryu,et al.  Approximate weighted frequent pattern mining with/without noisy environments , 2011, Knowl. Based Syst..

[47]  Ling Zhou,et al.  Association rule and quantitative association rule mining among infrequent items , 2007, MDM '07.

[48]  Mustafa Mat Deris,et al.  DFP-Growth: An Efficient Algorithm for Mining Frequent Patterns in Dynamic Database , 2012, ICICA.

[49]  Xiaohua Hu,et al.  Weak Ratio Rules: A Generalized Boolean Association Rules , 2011, Int. J. Data Warehous. Min..

[50]  Wynne Hsu,et al.  Mining association rules with multiple minimum supports , 1999, KDD '99.