Confidence-based robust optimisation using multi-objective meta-heuristics

Abstract Robust optimisation refers to the process of finding optimal solutions that have the lowest sensitivity to possible perturbations. In a multi-objective search space the robust optimal solutions should have the least dispersion on all of the objectives, making it a more challenging problem than in a single-objective search space. This paper establishes a novel and cheap technique for finding robust optimal solutions called confidence-based robust multi-objective optimisation. This approach uses a novel, modified Pareto dominance operator to differentiate search agents of meta-heuristics based on both levels of robustness and confidence. The proposed confidence-based Pareto dominance allows us to design different confidence-based robust optimisation variants of meta-heuristics based on different methods. As a case study, robust Multi-Objective Particle Swarm Optimisation is equipped with the proposed operator to produce Confidence-based Robust Multi-Objective Particle Swarm Optimisation. A set of specific test functions and performance indicators is employed for benchmarking the Confidence-based Robust Multi-Objective Particle Swarm Optimisation. The results show that the proposed method is able to confidently and reliably find robust optimal solutions without significant extra computational burden. The paper also considers finding the robust Pareto optimal front for a marine propeller design problem to demonstrate the applicability of the approach proposed in solving computationally expensive real-world problems with unknown true robust Pareto optimal fronts.

[1]  Guangyao Li,et al.  Multi-fidelity optimization for sheet metal forming process , 2011 .

[2]  Jürgen Branke,et al.  Creating Robust Solutions by Means of Evolutionary Algorithms , 1998, PPSN.

[3]  Carlos M. Fonseca,et al.  Evolutionary Multi-Objective Robust Optimization , 2008 .

[4]  Marjan Kaedi,et al.  Robust optimization using Bayesian optimization algorithm: Early detection of non-robust solutions , 2017, Appl. Soft Comput..

[5]  Jianguang Fang,et al.  A new multi-objective discrete robust optimization algorithm for engineering design , 2018 .

[6]  Baoyan Duan,et al.  Robust optimization with convex model considering bounded constraints on performance variation , 2017 .

[7]  João A. Vasconcelos,et al.  Decision maker iterative-based framework for multiobjective robust optimization , 2017, Neurocomputing.

[8]  X. Shao,et al.  An on-line Kriging metamodel assisted robust optimization approach under interval uncertainty , 2017 .

[9]  Kai-Yew Lum,et al.  Max-min surrogate-assisted evolutionary algorithm for robust design , 2006, IEEE Transactions on Evolutionary Computation.

[10]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[11]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[12]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[13]  Xin Yao,et al.  A framework for finding robust optimal solutions over time , 2013, Memetic Comput..

[14]  Andrew Lewis,et al.  Asynchronous Multi-Objective Optimisation in Unreliable Distributed Environments , 2009 .

[15]  Carlos Henggeler Antunes,et al.  Robustness Analysis in Multi-Objective Optimization Using a Degree of Robustness Concept , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[16]  Frank Neumann,et al.  Do additional objectives make a problem harder? , 2007, GECCO '07.

[17]  Alejandro Cervantes,et al.  Efficient dynamic resampling for dominance-based multiobjective evolutionary optimization , 2017 .

[18]  Yongsheng Ding,et al.  A multi-objective approach to robust optimization over time considering switching cost , 2017, Inf. Sci..

[19]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[20]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[21]  Tapabrata Ray,et al.  Towards practical evolutionary robust multi-objective optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[22]  Andrew Lewis,et al.  Confidence measure: A novel metric for robust meta-heuristic optimisation algorithms , 2015, Inf. Sci..

[23]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[24]  Kalyanmoy Deb,et al.  Advances in Evolutionary Multi-objective Optimization , 2012, SSBSE.

[25]  António Gaspar-Cunha,et al.  Evolutionary robustness analysis for multi-objective optimization: benchmark problems , 2013, Structural and Multidisciplinary Optimization.

[26]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[27]  Thomas Bäck,et al.  Robust design of multilayer optical coatings by means of evolutionary algorithms , 1998, IEEE Trans. Evol. Comput..

[28]  Frank Neumann,et al.  On the Effects of Adding Objectives to Plateau Functions , 2009, IEEE Transactions on Evolutionary Computation.

[29]  Kalyanmoy Deb,et al.  Searching for Robust Pareto-Optimal Solutions in Multi-objective Optimization , 2005, EMO.

[30]  A. Messac,et al.  Generating Well-Distributed Sets of Pareto Points for Engineering Design Using Physical Programming , 2002 .

[31]  Feng Zhang,et al.  A multi-objective robust optimization approach based on Gaussian process model , 2017 .

[32]  Jianguang Fang,et al.  Multi-objective and multi-case reliability-based design optimization for tailor rolled blank (TRB) structures , 2017 .

[33]  Kay Chen Tan,et al.  Robust Evolutionary Multi-objective Optimization , 2009 .

[34]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[35]  Bernhard Sendhoff,et al.  Trade-Off between Performance and Robustness: An Evolutionary Multiobjective Approach , 2003, EMO.

[36]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[37]  Hui Zhou,et al.  A deterministic robust optimisation method under interval uncertainty based on the reverse model , 2015 .

[38]  Guangyao Li,et al.  Crashworthiness design of vehicle by using multiobjective robust optimization , 2011 .

[39]  Jonathan E. Fieldsend Elite Accumulative Sampling Strategies for Noisy Multi-objective Optimisation , 2015, EMO.

[40]  Frederico G. Guimarães,et al.  Competitive coevolutionary algorithm for robust multi-objective optimization: The worst case minimization , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[41]  Hui Zhou,et al.  Metamodel Assisted Robust Optimization under Interval Uncertainly Based on Reverse Model , 2015 .

[42]  Seyedali Mirjalili Shifted robust multi-objective test problems , 2015 .

[43]  I. Y. Kim,et al.  Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .

[44]  Andrew Lewis,et al.  Novel frameworks for creating robust multi-objective benchmark problems , 2015, Inf. Sci..

[45]  T. Ray Constrained robust optimal design using a multiobjective evolutionary algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[46]  António Gaspar-Cunha,et al.  Robustness in multi-objective optimization using evolutionary algorithms , 2008, Comput. Optim. Appl..

[47]  Sergei Utyuzhnikov,et al.  Control of robust design in multiobjective optimization under uncertainties , 2012 .

[48]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[49]  Mitsuo Gen,et al.  Fast Multiobjective Hybrid Evolutionary Algorithm Based on Mixed Sampling Strategy , 2017 .

[50]  Qing Li,et al.  Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel , 2014 .

[51]  Shigeyoshi Tsutsui,et al.  Genetic algorithms with a robust solution searching scheme , 1997, IEEE Trans. Evol. Comput..

[52]  Kay Chen Tan,et al.  An investigation on noise-induced features in robust evolutionary multi-objective optimization , 2010, Expert Syst. Appl..

[53]  Jürgen Branke,et al.  Efficient Sampling When Searching for Robust Solutions , 2016, PPSN.

[54]  Jonathan E. Fieldsend,et al.  On the exploitation of search history and accumulative sampling in robust optimisation , 2017, GECCO.

[55]  Andrew Lewis,et al.  Novel performance metrics for robust multi-objective optimization algorithms , 2015, Swarm Evol. Comput..

[56]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[57]  Qing Li,et al.  A Comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure , 2013 .

[58]  Xiaojiang Lv,et al.  Multiobjective reliability-based optimization for crashworthy structures coupled with metal forming process , 2017, Structural and Multidisciplinary Optimization.

[59]  Athanasios V. Vasilakos,et al.  Robust Order Scheduling in the Discrete Manufacturing Industry: A Multiobjective Optimization Approach , 2017, IEEE Transactions on Industrial Informatics.

[60]  Carlos A. Brizuela,et al.  An experimental analysis of the p-median problem under uncertainty: an evolutionary algorithm approach , 2014 .

[61]  Tapabrata Ray,et al.  A surrogate assisted parallel multiobjective evolutionary algorithm for robust engineering design , 2006 .

[62]  Xueguan Song,et al.  Reliability Based Design Optimization for High-Strength Steel Tailor Welded Thin-Walled Structures under Crashworthiness , 2015 .

[63]  Andrew Lewis,et al.  Hindrances for robust multi-objective test problems , 2015, Appl. Soft Comput..

[64]  Jonathan E. Fieldsend,et al.  The Rolling Tide Evolutionary Algorithm: A Multiobjective Optimizer for Noisy Optimization Problems , 2015, IEEE Transactions on Evolutionary Computation.

[65]  António Gaspar-Cunha,et al.  Robustness using Multi-Objective Evolutionary Algorithms , 2006 .

[66]  Julia Handl,et al.  Implicit and Explicit Averaging Strategies for Simulation-Based Optimization of a Real-World Production Planning Problem , 2015, Informatica.