Recent progresses in quantum imaging real applications

We present two recent results achieved in INRIM laboratories paving the way for next future commercial use of quantum imaging techniques. The first exploits non-classical photon statistics of single nitrogen-vacancy color centers in diamond for realising super-resolution. A little more in detail we demonstrate that the measurement of high order correlation functions allows overcoming Abbe limit. The second exploits ghost imaging in a specific case of practical interest, i.e. in measuring magnetic structures in garnets.

[1]  S. Hell,et al.  Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit , 1995 .

[2]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[3]  C Silberhorn,et al.  Accessing higher order correlations in quantum optical states by time multiplexing. , 2010, Physical review letters.

[4]  Christine Silberhorn,et al.  Fiber-assisted detection with photon number resolution. , 2003, Optics letters.

[5]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[6]  G. Brida,et al.  Experimental realization of sub-shot-noise quantum imaging , 2010 .

[7]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[8]  Sae Woo Nam,et al.  Third-order antibunching from an imperfect single-photon source , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[9]  Ian A. Walmsley,et al.  Quantum states made to measure , 2009, 0912.4092.

[10]  P Olivero,et al.  Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics. , 2014, Physical review letters.

[11]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[12]  Shigeki Takeuchi,et al.  An entanglement-enhanced microscope , 2013, Nature Communications.

[13]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[14]  M Genovese,et al.  Quantum light in coupled interferometers for quantum gravity tests. , 2013, Physical review letters.

[15]  G. Hadjipanayis,et al.  Magnetic storage systems beyond 2000 , 2001 .

[16]  Marco Genovese,et al.  Mode reconstruction of a light field by multiphoton statistics , 2013 .

[17]  Y. Shih,et al.  Two-photon "ghost" imaging with thermal light , 2004, 2005 Quantum Electronics and Laser Science Conference.

[18]  G. Brida,et al.  Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light , 2011, 1103.1281.

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  Dan Oron,et al.  Improved resolution in fluorescence microscopy using quantum correlations , 2012 .

[21]  A. Gatti,et al.  High-resolution ghost image and ghost diffraction experiments with thermal light. , 2005, Physical review letters.

[22]  Dan Oron,et al.  Superresolution microscopy with quantum emitters. , 2013, Nano letters.