Dynamique optimale de systèmes articulés à cinématique fermée. Application à la synthèse d'allures de marche optimales

Ce memoire est centre sur l'optimisation dynamique de mouvements de systemes articules plans travaillant en boucle fermee. L'application visee est l'optimisation de pas de marche de robots bipedes. La premiere partie est consacree au developpement de modeles dynamiques de systemes boucles adaptes au probleme de l'optimisation lorsqu'on fait appel au principe du maximum de Pontryagin. Le probleme d'optimisation est traite dans la deuxieme partie. La demarche utilisee consiste a ouvrir la chaine au niveau d'une liaison bien choisie et a traiter les efforts de liaison comme des efforts de commande complementaires. La condition de fermeture de la chaine est alors consideree comme une contrainte du probleme d'optimisation et est traitee par une methode de penalite. Le troisieme chapitre contient des simulations numeriques relatives a des mecanismes plans suractionnes de type robots paralleles. Les principaux resultats concernent l'optimisation de pas de marche de bipedes plans a pattes bisegmentaires et trisegmentaires.

[1]  Motoji Yamamoto,et al.  Planning of manipulator joint trajectories by an iterative method , 1988, Robotica.

[2]  Carlos Canudas-de-Wit,et al.  Generation of energy optimal complete gait cycles for biped robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[3]  B. Leimkuhler,et al.  Numerical solution of differential-algebraic equations for constrained mechanical motion , 1991 .

[4]  Guy Bessonnet,et al.  Optimal Motion Planning of Robotic Manipulators Removing Mobile Objects Grasped in Motion , 2000, J. Intell. Robotic Syst..

[5]  Guy Bessonnet Optimisation dynamique des mouvements point à point de robots manipulateurs , 1992 .

[6]  Motoji Yamamoto,et al.  Cooperative motion planning for grasp-work type manipulators , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[7]  Fabrice Danès Critères et contraintes pour la synthèse optimale des mouvements de robots manipulateurs ; applications à l'évitement d'obstacles , 1998 .

[8]  Friedrich Pfeiffer,et al.  A concept for manipulator trajectory planning , 1987, IEEE J. Robotics Autom..

[9]  G. Bessonnet,et al.  Optimal Motion Synthesis – Dynamic Modelling and Numerical Solving Aspects , 2002 .

[10]  Guy Bessonnet,et al.  An anthropomorphic biped robot: dynamic concepts and technological design , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[11]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .

[12]  C. Azevedo On the Interaction between the Human and The Robot in Bipedal Walking , 2001 .

[13]  Milos Zefran,et al.  Optimal control of systems with unilateral constraints , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[14]  Vijay Kumar,et al.  Optimal trajectories and force distribution for cooperating arms , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[15]  S. Dubowsky,et al.  On the Optimal Control of Robotic Manipulators with Actuator Constraints , 1983, 1983 American Control Conference.

[16]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[17]  A. Weinreb,et al.  Optimal Control of Systems with Hard Control Bounds , 1985, 1985 American Control Conference.

[18]  Guy Bessonnet,et al.  Impactless sagittal gait of a biped robot during the single support phase , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[19]  Lino Guzzella,et al.  Time-optimal motions of robots in assembly tasks , 1986 .

[20]  David J. Reinkensmeyer,et al.  Swinging from the hip: use of dynamic motion optimization in the design of robotic gait rehabilitation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[21]  Guy Bessonnet,et al.  Biped robots: Correlations between technological design and dynamic behavior , 1997 .

[22]  Jean-Jacques E. Slotine,et al.  Improving the Efficiency of Time-Optimal Path-Following Algorithms , 1988, 1988 American Control Conference.

[23]  Miroslaw Galicki,et al.  The Planning of Robotic Optimal Motions in the Presence of Obstacles , 1998, Int. J. Robotics Res..

[24]  Guy Bessonnet,et al.  Optimal Gait Synthesis of a Planar Biped , 1998 .

[25]  Gabriel Abba,et al.  Quasi optimal gait for a biped robot using genetic algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[26]  Yannick Aoustin,et al.  Optimal reference trajectories for walking and running of a biped robot , 2001, Robotica.

[27]  Werner Schiehlen,et al.  Walking Without Impacts as a Motion/Force Control Problem , 1992 .

[28]  Guy Bessonnet,et al.  Sagittal gait of a biped robot during the single support phase. Part 2: optimal motion , 2001, Robotica.

[29]  Zvi Shiller Optimal Robot Motion Planning and Work-Cell Layout Design , 1997, Robotica.

[30]  Mostafa Rostami Contribution à l'étude dynamique de la phase unipodale de la marche sagittale, et étude expérimentale du comportement dynamique d'un membre locomoteur anthropomorphe de robot bipède , 1999 .

[31]  J. M. Skowronski,et al.  Control Dynamics of Robotic Manipulators , 1986 .

[32]  L. Roussel Génération de trajectoires de marche optimales pour un robot bipède , 1998 .

[33]  Hideo Hanafusa,et al.  Contribution of internal forces to the dynamics of closed chain mechanisms , 1995, Robotica.

[34]  Guy Bessonnet,et al.  Sagittal gait of a biped robot during the single support phase. Part 1: passive motion , 2001, Robotica.

[35]  Guy Bessonnet,et al.  Planning of optimal free paths of robotic manipulators with bounds on dynamic forces , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[36]  Guy Bessonnet,et al.  Optimal dynamics of constrained multibody systems. Application to bipedal walking synthesis , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[37]  Bernard Roth,et al.  The Near-Minimum-Time Control Of Open-Loop Articulated Kinematic Chains , 1971 .

[38]  Lino Guzzella,et al.  Time-optimal motions of robots in assembly tasks , 1985, 1985 24th IEEE Conference on Decision and Control.

[39]  Dariusz Ucinski,et al.  Time-optimal motions of robotic manipulators , 2000, Robotica.

[40]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[41]  D. Jacobson,et al.  Studies of human locomotion via optimal programming , 1971 .

[42]  James E. Bobrow,et al.  Minimum-Effort Motions for Open-Chain Manipulators with Task-Dependent End-Effector Constraints , 1999, Int. J. Robotics Res..

[43]  Olivier Coussi De l'observation cinématique à l'étude dynamique et énergétique de mouvements humains , 1997 .

[44]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[45]  Yaobin Chen,et al.  A proof of the structure of the minimum-time control law of robotic manipulators using a Hamiltonian formulation , 1990, IEEE Trans. Robotics Autom..

[46]  Wook Hyun Kwon,et al.  Redundancy optimization for cooperating manipulators using quadratic inequality constraints , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[47]  D. T. Pham,et al.  Derivation of optimal walking motions for a bipedal walking robot , 1992, Robotica.

[48]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.