Rank-based choice correspondences

Abstract By the mean of a three-individuals, six-alternatives preference profile, we prove that there exists no composition-consistent Paretian rank-based choice correspondence.

[1]  Bhaskar Dutta Covering sets and a new condorcet choice correspondence , 1988 .

[2]  D. Saari Geometry of voting , 1994 .

[3]  J. Banks Sophisticated voting outcomes and agenda control , 1984 .

[4]  P. Fishburn The Theory Of Social Choice , 1973 .

[5]  Jean-François Laslier,et al.  Condorcet choice correspondences: A set-theoretical comparison , 1995 .

[6]  Thomas Schwartz Cyclic tournaments and cooperative majority voting: A solution , 1990 .

[7]  Jean-François Laslier,et al.  Composition-consistent tournament solutions and social choice functions , 1996 .

[8]  Roger B. Myerson,et al.  Axiomatic derivation of scoring rules without the ordering assumption , 1993 .

[9]  Donald G. Saari,et al.  Copeland Method II: Manipulation, Monotonicity, and Paradoxes☆ , 1997 .

[10]  Jean-François Laslier,et al.  Social-Choice Mediators , 1994 .

[11]  H. Young,et al.  A Consistent Extension of Condorcet’s Election Principle , 1978 .

[12]  M. Breton,et al.  The Bipartisan Set of a Tournament Game , 1993 .

[13]  Nicholas R. Miller A New Solution Set for Tournaments and Majority Voting: Further Graph- Theoretical Approaches to the Theory of Voting , 1980 .

[14]  J. H. Smith AGGREGATION OF PREFERENCES WITH VARIABLE ELECTORATE , 1973 .

[15]  Leigh Tesfatsion,et al.  Fair division with uncertain needs and tastes , 1985 .

[16]  H. Young Social Choice Scoring Functions , 1975 .

[17]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[18]  P. Fishburn Condorcet Social Choice Functions , 1977 .