A local approach to concept generation
暂无分享,去创建一个
[1] Allan Borodin,et al. On the Number of Additions to Compute Specific Polynomials , 1976, SIAM J. Comput..
[2] Anne Berry,et al. Maintaining Class Membership Information , 2002, OOIS Workshops.
[3] Weifa Liang,et al. Efficient Enumeration of all Minimal Separators in a Graph , 1997, Theor. Comput. Sci..
[4] Dieter Kratsch,et al. Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..
[5] Jean Sallantin,et al. Structural Machine Learning with Galois Lattice and Graphs , 1998, ICML.
[6] J. Bordat. Calcul pratique du treillis de Galois d'une correspondance , 1986 .
[7] A. Guénoche. Construction du treillis de Galois d'une relation binaire , 1990 .
[8] Engelbert Mephu Nguifo,et al. How well go lattice algorithms on currently used machine learning testBeds? , 2004, EGC.
[9] Alain Sigayret. Data Mining : une approche par les graphes , 2002 .
[10] Engelbert Mephu Nguifo,et al. Using Lattice-Based Framework as a Tool for Feature Extraction , 1998, ECML.
[11] Engelbert Mephu Nguifo,et al. Partitioning large data to scale up lattice-based algorithm , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.
[12] Hong Shen,et al. Separators Are as Simple as Cutsets , 1999, ASIAN.
[13] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[14] Hervé Leblanc,et al. Galois lattice as a framework to specify building class hierarchies algorithms , 2000, RAIRO Theor. Informatics Appl..
[15] Rokia Missaoui,et al. A partition-based approach towards constructing Galois (concept) lattices , 2002, Discret. Math..
[16] Rokia Missaoui,et al. A Framework for Incremental Generation of Frequent Closed Itemsets , 2002 .
[17] Wen-Lian Hsu,et al. Fast and Simple Algorithms for Recognizing Chordal Comparability Graphs and Interval Graphs , 1999, SIAM J. Comput..
[18] Anne Berry,et al. Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..
[19] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[20] Nicolas Pasquier,et al. Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..
[21] Anne Berry,et al. Representing a concept lattice by a graph , 2002, Discret. Appl. Math..
[22] Wen-Lian Hsu,et al. Substitution Decomposition on Chordal Graphs and Applications , 1991, ISA.
[23] Sergei O. Kuznetsov,et al. Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..
[24] L. Beran,et al. [Formal concept analysis]. , 1996, Casopis lekaru ceskych.
[25] Lhouari Nourine,et al. A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..