A local approach to concept generation

Generating concepts defined by a binary relation between a set $\mathcal{P}$ of properties and a set $\mathcal{O}$ of objects is one of the important current problems encountered in Data Mining and Knowledge Discovery in Databases. We present a new algorithmic process which computes all the concepts, without requiring an exponential-size data structure, and with a good worst-time complexity analysis, which makes it competitive with the best existing algorithms for this problem. Our algorithm can be used to compute the edges of the lattice as well at no extra cost.

[1]  Allan Borodin,et al.  On the Number of Additions to Compute Specific Polynomials , 1976, SIAM J. Comput..

[2]  Anne Berry,et al.  Maintaining Class Membership Information , 2002, OOIS Workshops.

[3]  Weifa Liang,et al.  Efficient Enumeration of all Minimal Separators in a Graph , 1997, Theor. Comput. Sci..

[4]  Dieter Kratsch,et al.  Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..

[5]  Jean Sallantin,et al.  Structural Machine Learning with Galois Lattice and Graphs , 1998, ICML.

[6]  J. Bordat Calcul pratique du treillis de Galois d'une correspondance , 1986 .

[7]  A. Guénoche Construction du treillis de Galois d'une relation binaire , 1990 .

[8]  Engelbert Mephu Nguifo,et al.  How well go lattice algorithms on currently used machine learning testBeds? , 2004, EGC.

[9]  Alain Sigayret Data Mining : une approche par les graphes , 2002 .

[10]  Engelbert Mephu Nguifo,et al.  Using Lattice-Based Framework as a Tool for Feature Extraction , 1998, ECML.

[11]  Engelbert Mephu Nguifo,et al.  Partitioning large data to scale up lattice-based algorithm , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[12]  Hong Shen,et al.  Separators Are as Simple as Cutsets , 1999, ASIAN.

[13]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[14]  Hervé Leblanc,et al.  Galois lattice as a framework to specify building class hierarchies algorithms , 2000, RAIRO Theor. Informatics Appl..

[15]  Rokia Missaoui,et al.  A partition-based approach towards constructing Galois (concept) lattices , 2002, Discret. Math..

[16]  Rokia Missaoui,et al.  A Framework for Incremental Generation of Frequent Closed Itemsets , 2002 .

[17]  Wen-Lian Hsu,et al.  Fast and Simple Algorithms for Recognizing Chordal Comparability Graphs and Interval Graphs , 1999, SIAM J. Comput..

[18]  Anne Berry,et al.  Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..

[19]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[20]  Nicolas Pasquier,et al.  Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..

[21]  Anne Berry,et al.  Representing a concept lattice by a graph , 2002, Discret. Appl. Math..

[22]  Wen-Lian Hsu,et al.  Substitution Decomposition on Chordal Graphs and Applications , 1991, ISA.

[23]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[24]  L. Beran,et al.  [Formal concept analysis]. , 1996, Casopis lekaru ceskych.

[25]  Lhouari Nourine,et al.  A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..