The cohesiveness of G-symplectic methods
暂无分享,去创建一个
[1] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[2] A. Hill,et al. An iterative starting method to control parasitism for the Leapfrog method , 2015 .
[3] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[4] Ernst Hairer,et al. On the Butcher group and general multi-value methods , 1974, Computing.
[5] The Control of Parasitism in G-symplectic Methods , 2014, SIAM J. Numer. Anal..
[6] Urs Kirchgraber,et al. Multi-step methods are essentially one-step methods , 1986 .
[7] M. J,et al. RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .
[8] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[9] John C. Butcher. General linear methods , 2006, Acta Numerica.
[10] Oliver Lundqvist,et al. Numerical Methods for Ordinary Differential Equations , 2013, An Introduction to Numerical Methods and Analysis 3e.
[11] John C. Butcher,et al. An algebraic theory of integration methods , 1972 .
[12] J. C. Butcher,et al. Dealing with Parasitic Behaviour in G-Symplectic Integrators , 2013 .
[13] Daniel Stoffer,et al. General linear methods: connection to one step methods and invariant curves , 1993 .
[14] Angelamaria Cardone,et al. Order conditions for general linear methods , 2015, J. Comput. Appl. Math..