The Calculus of Signal Flow Diagrams I: Linear relations on streams

We introduce a graphical syntax for signal flow diagrams based on the language of symmetric monoidal categories. Using universal categorical constructions, we provide a stream semantics and a sound and complete axiomatisation.A certain class of diagrams captures the orthodox notion of signal flow graph used in control theory; we show that any diagram of our syntax can be realised, via rewriting in the equational theory, as a signal flow graph.

[1]  Filippo Bonchi,et al.  A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.

[2]  M. Pohst Computational Algebraic Number Theory , 1993 .

[3]  S. Lack,et al.  The formal theory of monads II , 2002 .

[4]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[5]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[6]  Filippo Bonchi Interacting Hopf Algebras: the Theory of Linear Systems (text not included) , 2019, ICTCS.

[7]  Stefan Milius A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[8]  Roberto Bruni,et al.  Connector algebras for C/E and P/T nets' interactions , 2013, Log. Methods Comput. Sci..

[9]  Dominic R. Verity,et al.  Traced monoidal categories , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  John C. Baez,et al.  Categories in Control , 2014, 1405.6881.

[11]  Zoltán Ésik,et al.  Fixed-Point Operations on ccc's. Part I , 1996, Theor. Comput. Sci..

[12]  J. Willems The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.

[13]  Masahito Hasegawa,et al.  Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi , 1997, TLCA.

[14]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[15]  Aleks Kissinger,et al.  Finite matrices are complete for (dagger-)hypergraph categories , 2014, 1406.5942.

[16]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[17]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[18]  S. Maclane,et al.  Categorical Algebra , 2007 .

[19]  B. Russell I.—On the Notion of Cause , 1913 .

[20]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[21]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.

[22]  B. P. Lathi Signal Processing And Linear Systems , 1998 .

[23]  Cristian S. Calude,et al.  Discrete Mathematics and Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[24]  Marcello M. Bonsangue,et al.  (Co)Algebraic Characterizations of Signal Flow Graphs , 2014, Horizons of the Mind.

[25]  Filippo Bonchi,et al.  Interacting Bialgebras Are Frobenius , 2014, FoSSaCS.

[26]  Marilena Barnabei,et al.  Some algebraic aspects of signal processing , 1998 .

[27]  Dan R. Ghica,et al.  Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits , 2013, Computation, Logic, Games, and Quantum Foundations.

[28]  Filippo Bonchi,et al.  Full Abstraction for Signal Flow Graphs , 2015, POPL.

[29]  Pawel Sobocinski,et al.  Representations of Petri Net Interactions , 2010, CONCUR.

[30]  Nicoletta Sabadini,et al.  Span(Graph): A Categorial Algebra of Transition Systems , 1997, AMAST.

[31]  Eugenia Cheng,et al.  Iterated distributive laws , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  Stephen Lack,et al.  Coalgebras, braidings and distributive laws , 2004 .

[33]  Jan J. M. M. Rutten,et al.  A tutorial on coinductive stream calculus and signal flow graphs , 2005, Theor. Comput. Sci..

[34]  Elham Kashefi,et al.  Horizons of the Mind. A Tribute to Prakash Panangaden , 2014, Lecture Notes in Computer Science.

[35]  Brendan Fong,et al.  A Compositional Framework for Passive Linear Networks , 2015, 1504.05625.

[36]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[37]  Roberto Bruni,et al.  A basic algebra of stateless connectors , 2006, Theor. Comput. Sci..

[38]  Filippo Bonchi,et al.  Interacting Hopf Algebras , 2014, ArXiv.

[39]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .