Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors

Abstract From a computational point of view it is natural to suggest the classification of attractors, based on the simplicity of finding basin of attraction in the phase space: an attractor is called a hidden attractor if its basin of attraction does not intersect with small neighborhoods of equilibria, otherwise it is called a self-excited attractor. Self-excited attractors can be localized numerically by the standard computational procedure , in which after a transient process a trajectory, started from a point of unstable manifold in a neighborhood of unstable equilibrium, is attracted to the state of oscillation and traces it. Thus one can determine unstable equilibria and check the existence of self-excited attractors. In contrast, for the numerical localization of hidden attractors it is necessary to develop special analytical-numerical procedures in which an initial point can be chosen from the basin of attraction analytically. For example, hidden attractors are attractors in the systems with no-equilibria or with the only stable equilibrium (a special case of multistability and coexistence of attractors); hidden attractors arise in the study of well-known fundamental problems such as 16th Hilbert problem, Aizerman and Kalman conjectures, and in applied research of Chua circuits, phase-locked loop based circuits, aircraft control systems, and others.

[1]  P. Grabowski Absolute stability criteria for infinite-dimensional discrete Lur'e systems with application to loaded distortionless electric RLCG-transmission line , 2013 .

[2]  Nikolay V. Kuznetsov,et al.  Prediction of Hidden Oscillations Existence in Nonlinear Dynamical Systems: Analytics and Simulation , 2013, NOSTRADAMUS.

[3]  Alexander Lanzon,et al.  A Robust Kalman Conjecture for First-Order Plants , 2012, ROCOND.

[4]  Julien Clinton Sprott,et al.  Multistability in a Butterfly Flow , 2013, Int. J. Bifurc. Chaos.

[5]  Gennady A. Leonov,et al.  Efficient methods in the search for periodic oscillations in dynamical systems , 2010 .

[6]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[7]  Ricardo Suyama,et al.  Chaotic Signals in Digital Communications , 2013 .

[8]  Sophie Tarbouriech,et al.  Optimization and implementation of dynamic anti-windup compensators with multiple saturations in flight control systems , 2009 .

[9]  Johan Grasman,et al.  Relaxation Oscillations , 2009, Encyclopedia of Complexity and Systems Science.

[10]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[11]  Nikolay V. Kuznetsov,et al.  Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems , 2011 .

[12]  G. Leonov,et al.  Hidden oscillations in dynamical systems , 2011 .

[13]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[14]  E. G. Baker,et al.  Collection of Short Papers on the Beaver Creek Watershed Study in West Tennessee, 1989-94 , 1995 .

[15]  Soumitro Banerjee,et al.  Coexisting attractors, chaotic saddles, and fractal basins in a power electronic circuit , 1997 .

[16]  Michael I. Gil,et al.  Explicit Stability Conditions for Continuous Systems , 2005 .

[17]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[18]  Nikolay V. Kuznetsov,et al.  Algorithm for localizing Chua attractors based on the harmonic linearization method , 2010 .

[19]  Nikolay V. Kuznetsov,et al.  Hidden Oscillations in Aircraft Flight Control System with Input Saturation , 2013, PSYCO.

[20]  H. Poincaré,et al.  Sur les courbes définies par les équations différentielles(III) , 1885 .

[21]  J. Ackermann,et al.  Robust Control: The Parameter Space Approach , 2012 .

[22]  Awadhesh Prasad,et al.  Complicated basins and the phenomenon of amplitude death in coupled hidden attractors , 2014 .

[23]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[24]  Nikolay V. Kuznetsov,et al.  A direct method for calculating Lyapunov quantities of two-dimensional dynamical systems , 2011 .

[25]  J. A. Tenreiro Machado,et al.  Discontinuity and complexity in nonlinear physical systems , 2014 .

[26]  Julien Clinton Sprott,et al.  Chaotic flows with a single nonquadratic term , 2014 .

[27]  Julien Clinton Sprott,et al.  A dynamical system with a strange attractor and invariant tori , 2014 .

[28]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[29]  Stephen Lynch,et al.  Dynamical Systems with Applications using Maple , 2000 .

[30]  B. Brogliato,et al.  Dissipative Systems Analysis and Control , 2000 .

[31]  Ali Abooee,et al.  Analysis and circuitry realization of a novel three-dimensional chaotic system , 2013, Commun. Nonlinear Sci. Numer. Simul..

[32]  Qingdu Li,et al.  On hidden twin attractors and bifurcation in the Chua’s circuit , 2014 .

[33]  Nikolay V. Kuznetsov,et al.  IWCFTA2012 Keynote Speech I - Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits , 2012 .

[34]  R Jaimes-Reátegui,et al.  Synchronization of chaotic systems with coexisting attractors. , 2006, Physical review letters.

[35]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[36]  G. Leonov,et al.  On stability by the first approximation for discrete systems , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..

[37]  A. LeonovG. Lyapunov quantities , limit cycles and strange behavior of trajectories in two-dimensional quadratic systems , 2008 .

[38]  Luca Zaccarian,et al.  Anti-windup design for manual flight control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[39]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[40]  Nikolay V. Kuznetsov,et al.  Visualization of Four Normal Size Limit Cycles in Two-Dimensional Polynomial Quadratic System , 2013 .

[41]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[42]  Michael Margaliot,et al.  Absolute stability of third-order systems: A numerical algorithm , 2006, Autom..

[43]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[44]  Zhouchao Wei Complex Dynamics of a New Chaotic System without Equilibria , 2012, 2012 Fifth International Workshop on Chaos-fractals Theories and Applications.

[45]  Nikolay V. Kuznetsov,et al.  On problems of Aizerman and Kalman , 2010 .

[46]  Graham,et al.  Nonequilibrium potential for coexisting attractors. , 1986, Physical review. A, General physics.

[47]  Nikolay V. Kuznetsov,et al.  Algorithm for constructing counterexamples to the Kalman problem , 2010 .

[48]  Ulrike Feudel,et al.  Complex Dynamics in multistable Systems , 2008, Int. J. Bifurc. Chaos.

[49]  Jean-Marc Biannic,et al.  Convex Design of a Robust Antiwindup Controller for an LFT Model , 2007, IEEE Transactions on Automatic Control.

[50]  Julien Clinton Sprott,et al.  Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.

[51]  Mykola Hayvanovych,et al.  Algorithms for finding hidden groups and their structure from the streaming communication data , 2009 .

[52]  U. Feudel,et al.  Control of multistability , 2014 .

[53]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[54]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[55]  Nikolay V. Kuznetsov,et al.  Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems , 2011 .

[56]  Nikolay V. Kuznetsov,et al.  Computation of the first Lyapunov quantity for the second-order dynamical system , 2007, PSYCO.

[57]  L. Chua,et al.  The double scroll family , 1986 .

[58]  Irene M. Moroz,et al.  Degenerate Hopf bifurcations, hidden attractors, and control in the extended Sprott E system with only one stable equilibrium , 2014 .

[59]  Nikolay V. Kuznetsov,et al.  Convergence based anti-windup design method and its application to flight control , 2012, 2012 IV International Congress on Ultra Modern Telecommunications and Control Systems.

[60]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[61]  G. Leonov Strange attractors and classical stability theory , 2006 .

[62]  Maite Grau,et al.  Some open problems related to 16 b Hilbert problem , 2003 .

[63]  Tao Yang,et al.  A SURVEY OF CHAOTIC SECURE COMMUNICATION SYSTEMS , 2004 .

[64]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in nonlinear control systems , 2011 .

[65]  Engelbert Hubbers,et al.  A polynomial counterexample to the Markus-Yamabe conjecture , 1997 .

[66]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[67]  René Lozi,et al.  The Theory of Confinors in Chua's Circuit: accurate Analysis of bifurcations and attractors , 1993, Chua's Circuit.

[68]  R.T. Reichert Dynamic scheduling of modern-robust-control autopilot designs for missiles , 1992, IEEE Control Systems.

[69]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[70]  Tomasz Kapitaniak,et al.  Chaotic oscillators : theory and applications , 1992 .

[71]  B. R. Andrievskii,et al.  Aircraft control with anti-windup compensation , 2012 .

[72]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[73]  Lin Huang,et al.  Analysis and Control of Nonlinear Systems with Stationary Sets: Time-Domain and Frequency-Domain Methods , 2009 .

[74]  Jibin Li,et al.  Hilbert's 16th Problem and bifurcations of Planar Polynomial Vector Fields , 2003, Int. J. Bifurc. Chaos.

[75]  Nikolay V. Kuznetsov,et al.  Hidden Attractor in Chua's Circuits , 2011, ICINCO.

[76]  G. Leonov,et al.  Localization of hidden attractors in smooth Chua's systems , 2011 .

[77]  René Lozi,et al.  THE THEORY OF CONFINORS IN CHUA’S CIRCUIT: ACCURATE ANALYSIS OF BIFURCATIONS AND ATTRACTORS , 1993 .

[78]  R. T. Reichert Dynamic scheduling of modern-robust-control autopilot designs for missiles , 1992 .

[79]  P. Neittaanmaki,et al.  Drilling systems failures and hidden oscillations , 2012, 2012 IEEE 4th International Conference on Nonlinear Science and Complexity (NSC).

[80]  Nikolay V. Kuznetsov,et al.  Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor , 2014, Commun. Nonlinear Sci. Numer. Simul..

[81]  Nikolay V. Kuznetsov,et al.  Algorithm for construction of counterexamples to Aizerman's and Kalman's conjecture , 2010, PSYCO.

[82]  Nikolay V. Kuznetsov,et al.  Analytical-numerical method for attractor localization of generalized Chua's system , 2010, PSYCO.

[83]  Jan Awrejcewicz,et al.  Routes to chaos in continuous mechanical systems. Part 1: Mathematical models and solution methods , 2012 .

[84]  Leon O. Chua,et al.  A zoo of strange attractors from the canonical Chua's circuits , 1992, [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems.

[85]  Zbigniew Galias,et al.  Numerical Study of Coexisting attractors for the HéNon Map , 2013, Int. J. Bifurc. Chaos.

[86]  X. Liao,et al.  Absolute Stability of Nonlinear Control Systems , 2008 .

[87]  Bernhard Maschke,et al.  Dissipative Systems Analysis and Control , 2000 .

[88]  N. Gubar,et al.  Investigation of a piecewise linear dynamical system with three parameters , 1961 .

[89]  Jaume Llibre,et al.  Algebraic determination of limit cycles in a family of three-dimensional piecewise linear differenti , 2011 .

[90]  Nikolay V. Kuznetsov,et al.  Counterexample of Perron in the Discrete Case , 2001 .

[91]  Maciej Ogorzalek Chaos and Complexity in Nonlinear Electronic Circuits , 1997 .

[92]  Nikolay V. Kuznetsov,et al.  Limit cycles of quadratic systems with a perturbed weak focus of order 3 and a saddle equilibrium at infinity , 2010 .

[93]  Richard M. Murray,et al.  Stabilization of integrator chains in the presence of magnitude and rate saturations: a gain scheduling approach , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[94]  Yang Liu,et al.  Intermittent control of coexisting attractors , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[95]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in stabilization system of flexible launcher with saturating actuators , 2013 .

[96]  A three-dimensional singularly perturbed conservative system with symmetry breaking , 2013 .

[97]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[98]  W. Haddad,et al.  Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach , 2008 .

[99]  Lawrence Markus,et al.  Global stability criteria for differential systems. , 1960 .

[100]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[101]  Roman Senkerik,et al.  An investigation on evolutionary reconstruction of continuous chaotic systems , 2013, Math. Comput. Model..

[102]  J. J. Stoker Nonlinear Vibrations in Mechanical and Electrical Systems , 1950 .

[103]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[104]  Nikolay V. Kuznetsov,et al.  Analytical-Numerical Localization of Hidden Attractor in Electrical Chua’s Circuit , 2013 .

[105]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[106]  C. Medaglia,et al.  A Numerical Study , 2005 .

[107]  Nathan van de Wouw,et al.  Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities , 2009, Autom..

[108]  James W. Begun,et al.  Chaos and Complexity , 1994 .

[109]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[110]  G. Duffing,et al.  Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung , 1918 .

[111]  O. Rössler An equation for continuous chaos , 1976 .

[112]  Hal R. Varian,et al.  Dynamical systems with applications to economics , 2000 .

[113]  Guanrong Chen,et al.  An Unusual 3D Autonomous Quadratic Chaotic System with Two Stable Node-Foci , 2010, Int. J. Bifurc. Chaos.

[114]  K. Fujii,et al.  Complexity-stability relationship of two-prey-one-predator species system model: local and global stability. , 1977, Journal of theoretical biology.

[115]  Nikolay V. Kuznetsov,et al.  Cycles of two-dimensional systems: Computer calculations, proofs, and experiments , 2008 .

[116]  Chunlai Mu,et al.  Estimations for ultimate boundary of a new hyperchaotic system and its simulation , 2014 .

[117]  Julien Clinton Sprott,et al.  Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor , 2014, Int. J. Bifurc. Chaos.

[118]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[119]  Stephen P. Timoshenko,et al.  Vibration Problems in Engineering - fourth edition , 1974 .

[120]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[121]  S. Nikravesh Nonlinear Systems Stability Analysis: Lyapunov-Based Approach , 2013 .

[122]  F. Tricomi,et al.  Integrazione di un' equazione differenziale presentatasi in elettrotecnica , 1933 .