Quantifying Communication in Synchronized Languages

A mutual information rate is proposed to quantitatively evaluate inter-process synchronized communication. For finite-state processes with implicit communication that can be described by a counting language, it is shown that the mutual information rate is effectively computable. When the synchronization always happens between the same two symbols at the same time (or with a fixed delay), the mutual information rate is computable. In contrast, when the delay is not fixed, the rate is not computable. Finally, it is shown that some cases exist where the mutual information rate is not computable.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Oscar H. Ibarra,et al.  Information rate of some classes of non-regular languages: An automata-theoretic approach , 2017, Inf. Comput..

[3]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[4]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[5]  A. Razborov Communication Complexity , 2011 .

[6]  George A. Miller,et al.  Finite State Languages , 1958, Inf. Control..

[7]  Eitan M. Gurari,et al.  The Complexity of Decision Problems for Finite-Turn Multicounter Machines , 1981, J. Comput. Syst. Sci..

[8]  Oscar H. Ibarra,et al.  A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems , 2003, ICALP.

[9]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[10]  F. P. Kaminger The Noncomputability of the Channel Capacity of Context-Senstitive Languages , 1970, Inf. Control..

[11]  Oscar H. Ibarra,et al.  Binary Reachability Analysis of Discrete Pushdown Timed Automata , 2000, CAV.

[12]  Oscar H. Ibarra,et al.  Sampling a Two-Way Finite Automaton , 2015 .

[13]  Eugene Asarin,et al.  Volume and Entropy of Regular Timed Languages: Discretization Approach , 2009, CONCUR.

[14]  Werner Kuich,et al.  On the Entropy of Context-Free Languages , 1970, Inf. Control..

[15]  Oscar H. Ibarra,et al.  Execution information rate for some classes of automata , 2016, Inf. Comput..

[16]  Oscar H. Ibarra,et al.  Characterizations of Catalytic Membrane Computing Systems , 2003, MFCS.

[17]  Zhe Dang,et al.  Pushdown timed automata: a binary reachability characterization and safety verification , 2001, Theor. Comput. Sci..

[18]  Pasquale Malacaria,et al.  Quantitative analysis of leakage for multi-threaded programs , 2007, PLAS '07.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Stephen Chong,et al.  Towards a practical secure concurrent language , 2012, OOPSLA '12.

[21]  Ludwig Staiger The Entropy of Lukasiewicz-Languages , 2001, Developments in Language Theory.

[22]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[23]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[24]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[25]  Oscar H. Ibarra,et al.  Information Rate of Some Classes of Non-regular Languages: An Automata-Theoretic Approach - (Extended Abstract) , 2014, MFCS.

[26]  Cynthia E. Irvine,et al.  A security domain model to assess software for exploitable covert channels , 2008, PLAS '08.

[27]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[28]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[29]  Zhe Dang,et al.  Zero-Knowledge Blackbox Testing: where are the Faults? , 2014, Int. J. Found. Comput. Sci..

[30]  Oscar H. Ibarra,et al.  Similarity in languages and programs , 2013, Theor. Comput. Sci..