Fractional-Order PID

Thinking of Laplace and frequency domains, it should not be hard for the feedback control community to understand that, by considering more general control actions of the form s α ,α∈ℝ, we could achieve more satisfactory compromises between the positive and negative effects of the basic control actions (proportional, derivative, and integral ones) on the controlled system behavior, and that we could develop more powerful design methods to satisfy the controlled system specifications by combining these actions. The characteristic operators of these actions in the Laplace domain are equivalent to fractional-order derivatives and integrals in the time domain. This leads us to the so-called Fractional Calculus (FC), the generalization of the classical calculus to orders of integration and differentiation not necessarily integer. The application of the fractional-order operators to the PID algorithm gives us the Fractional-order PID (FoPID), one of the subjects deserving more attention in Fractional-order Control (FOC). In this chapter, after introducing the above mentioned generalized control actions, the FoPID will be studied, and the tuning rules and ways for its implementation will be reviewed and discussed, as well as its practical applications.

[1]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[2]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[3]  I. Petras,et al.  Design of Fractional-Order Controllers via H∞ Norm Minimisation , 2000 .

[4]  St'ephane Dugowson,et al.  Les différentielles métaphysiques : histoire et philosophie de la généralisation de l'ordre de la dérivation , 1994 .

[5]  Y. Chen,et al.  A robust tuning method for fractional order PI controllers , 2006 .

[6]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[7]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[8]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[9]  Hung-Cheng Chen,et al.  Tuning of fractional PID controllers using adaptive genetic algorithm for active magnetic bearing system , 2009 .

[10]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[11]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[12]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[13]  YangQuan Chen,et al.  A Physical experimental study of variable-order fractional integrator and differentiator , 2011 .

[14]  J. Ackermann,et al.  Robust control , 2002 .

[15]  Duarte Valério,et al.  Tuning of Fractional Controllers Minimising H 2 and H∞ Norms , 2006 .

[16]  Guido Maione,et al.  Concerning continued fractions representation of noninteger order digital differentiators , 2006, IEEE Signal Processing Letters.

[17]  Yangquan Chen,et al.  When is a Mittag-Leffler function a Nussbaum function? , 2009, Autom..

[18]  Richard M. Murray,et al.  Feedback Systems An Introduction for Scientists and Engineers , 2007 .

[19]  Alfonso Baños,et al.  Automatic Loop Shaping in QFT Using CRONE Structures , 2008 .

[20]  Enrico Pisoni,et al.  An interactive tool for fractional order PID controllers , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[21]  I. Petráš Stability of Fractional-Order Systems with Rational Orders , 2008, 0811.4102.

[22]  Dingyu Xue,et al.  Optimal Fractional Order Proportional Integral Controller for Varying Time-Delay Systems , 2008 .

[23]  D. Sierociuk,et al.  Stability of Discrete Fractional Order State-space Systems , 2008 .

[24]  P. Lino,et al.  New tuning rules for fractional PIα controllers , 2007 .

[25]  Alain Oustaloup,et al.  The CRONE toolbox for Matlab , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[26]  Blas M. Vinagre,et al.  Microelectronic Implementations of Fractional-Order Integrodifferential Operators , 2007 .

[27]  Inés Tejado Balsera,et al.  Position and Velocity Control of a Servo by Using GPC of Arbitrary Real Order , 2010 .

[28]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[29]  C. Lubich Discretized fractional calculus , 1986 .

[30]  G. Bohannan Analog Fractional Order Controller in Temperature and Motor Control Applications , 2008 .

[31]  Duarte Valério,et al.  Tuning Rules for Fractional PIDs , 2007 .

[32]  M. E. Bise,et al.  Fractional calculus application in control systems , 1990, IEEE Conference on Aerospace and Electronics.

[33]  Reza Ghaderi,et al.  Adaptive Fractional PID Controller for Robot Manipulator , 2012, ArXiv.

[34]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[35]  Kok Kiong Tan,et al.  Robust self-tuning PID controller for nonlinear systems , 2002 .

[36]  H. W. Bode Relations between attenuation and phase in feedback amplifier design , 1940 .

[37]  Y. Chen,et al.  Tuning fractional order proportional integral controllers for fractional order systems , 2010 .

[38]  J. A. Tenreiro Machado,et al.  A Fractional Calculus Perspective of PID Tuning , 2003 .

[39]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[40]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .

[41]  Y. Chen,et al.  A fractional order PID tuning algorithm for a class of fractional order plants , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[42]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[43]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[44]  Duarte Valério,et al.  Variable Order Fractional Controllers , 2013 .

[45]  S. Westerlund,et al.  Capacitor theory , 1994 .

[46]  A. Banos,et al.  Tuning of Fractional PID Controllers by Using QFT , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[47]  B. M. V. Jara Modelado y control de sistemas caracterizados por ecuaciones íntegro-diferenciales de orden fraccional , 2001 .

[48]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[49]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[50]  Kevin L. Moore,et al.  Relay feedback tuning of robust PID controllers with iso-damping property , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[51]  Yangquan Chen,et al.  Fractional order [proportional derivative] controller for a class of fractional order systems , 2009, Autom..

[52]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[53]  Y. Chen,et al.  Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers , 2008 .

[54]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[55]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .