In Operando Optical Tracking of Oxygen Vacancy Migration and Phase Change in few Nanometers Ferroelectric HZO Memories

[1]  S. Jeon,et al.  Flexible Ferroelectric Hafnia-Based Synaptic Transistor by Focused-Microwave Annealing. , 2021, ACS applied materials & interfaces.

[2]  Jie Jiang,et al.  Ferroelectric switching behavior of nanoscale Hf0.5Zr0.5O2 grains , 2021, International Journal of Mechanical Sciences.

[3]  Yanning Song,et al.  Large remanent polarization in Ta-doped HfO2 thin films by reactive sputtering , 2021, Applied Physics Letters.

[4]  N. Cady,et al.  Ferroelectric Phase Content in 7 nm Hf(1−x)ZrxO2 Thin Films Determined by X‐Ray‐Based Methods , 2021, physica status solidi (a).

[5]  A. Björling,et al.  Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices , 2021, Science.

[6]  Jun Hee Lee,et al.  Enhanced ferroelectric switching speed of Si-doped HfO2 thin film tailored by oxygen deficiency , 2021, Scientific Reports.

[7]  S. Clima,et al.  Elucidating possible crystallographic origins of wake-up mechanisms in ferroelectric hafnia , 2021 .

[8]  T. Mikolajick,et al.  Ferroelectricity in bulk hafnia , 2021, Nature Materials.

[9]  H. Lv,et al.  Wake‐Up Effect in HfO2‐Based Ferroelectric Films , 2020, Advanced Electronic Materials.

[10]  C. Hu,et al.  Role of electrode-induced oxygen vacancies in regulating polarization wake-up in ferroelectric capacitors , 2020 .

[11]  Sung‐Min Yoon,et al.  Comparative studies on ferroelectric switching kinetics of sputtered Hf0.5Zr0.5O2 thin films with variations in film thickness and crystallinity , 2020 .

[12]  J. Baumberg,et al.  Real-time in situ optical tracking of oxygen vacancy migration in memristors , 2020, Nature Electronics.

[13]  R. Choi,et al.  A Comprehensive Study on the Effect of TiN Top and Bottom Electrodes on Atomic Layer Deposited Ferroelectric Hf0.5Zr0.5O2 Thin Films , 2020, Materials.

[14]  J. Baumberg,et al.  Plasmonic Nanocavity Modes: From Near-Field to Far-Field Radiation , 2019, ACS Photonics.

[15]  Marin Alexe,et al.  Artificial Optoelectronic Synapses Based on Ferroelectric Field-Effect Enabled 2D Transition Metal Dichalcogenide Memristive Transistors. , 2019, ACS nano.

[16]  Jie Jiang,et al.  The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle , 2019, Computational Materials Science.

[17]  Jeremy J. Baumberg,et al.  Extreme nanophotonics from ultrathin metallic gaps , 2019, Nature Materials.

[18]  C. Schindler,et al.  Oxygen vacancy filament-based resistive switching in Hf0.5Zr0.5O2 thin films for non-volatile memory , 2019, Advanced Materials Letters.

[19]  Sergei V. Kalinin,et al.  Possible electrochemical origin of ferroelectricity in HfO2 thin films , 2018, 1811.09787.

[20]  Jan Mertens,et al.  Electrically Controlled Nano and Micro Actuation in Memristive Switching Devices with On-Chip Gas Encapsulation. , 2018, Small.

[21]  S. Slesazeck,et al.  On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2 , 2018, Journal of Applied Physics.

[22]  Stefan Slesazeck,et al.  Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors , 2018 .

[23]  C. Hwang,et al.  Improved Ferroelectric Switching Endurance of La-Doped Hf0.5Zr0.5O2 Thin Films. , 2018, ACS applied materials & interfaces.

[24]  Jaebeom Lee,et al.  Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget , 2017 .

[25]  Yu Luo,et al.  Spatiotemporal Dynamics and Control of Strong Coupling in Plasmonic Nanocavities , 2017 .

[26]  J. Jo,et al.  Structural properties of solution-processed Hf0.5Zr0.5O2 thin films , 2017 .

[27]  S. Menzel,et al.  Pulse wake-up and breakdown investigation of ferroelectric yttrium doped HfO2 , 2017 .

[28]  Thomas Mikolajick,et al.  Structural Changes Underlying Field‐Cycling Phenomena in Ferroelectric HfO2 Thin Films , 2016 .

[29]  Stefan Slesazeck,et al.  Physical Mechanisms behind the Field‐Cycling Behavior of HfO2‐Based Ferroelectric Capacitors , 2016 .

[30]  Stephan Hofmann,et al.  Nanoscale Plasmon-Enhanced Spectroscopy in Memristive Switches. , 2016, Small.

[31]  Christoph Adelmann,et al.  Stabilizing the ferroelectric phase in doped hafnium oxide , 2015 .

[32]  Thomas Mikolajick,et al.  Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films , 2015, Advanced materials.

[33]  Vincent Garcia,et al.  Ferroelectric tunnel junctions for information storage and processing , 2014, Nature Communications.

[34]  Chris J. Pickard,et al.  OptaDOS: A tool for obtaining density of states, core-level and optical spectra from electronic structure codes , 2014, Comput. Phys. Commun..

[35]  C. Hwang,et al.  The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity , 2014 .

[36]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[37]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[38]  M. Varela,et al.  Nonferroelectric contributions to the hysteresis cycles in manganite thin films: A comparative study of measurement techniques , 2011 .

[39]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[40]  C. Choy,et al.  Interface-oxygen-loss-controlled voltage offsets in epitaxial Pb(Zr0.52Ti0.48)O3 thin-film capacitors with La0.7Sr0.3MnO3 electrodes , 2004 .

[41]  James F. Scott,et al.  Switching kinetics of lead zirconate titanate submicron thin‐film memories , 1988 .