Markov type and threshold embeddings

AbstractFor two metric spaces X and Y, say that X threshold-embeds into Y if there exist a number K > 0 and a family of Lipschitz maps $${\{\varphi_{\tau} : X \to Y : \tau > 0\}}$$ such that for every $${x,y \in X}$$, $$d_X(x, y) \geq \tau \implies d_Y(\varphi_\tau (x),\varphi_\tau (y)) \geq \|{\varphi}_\tau\|_{\rm Lip}\tau/K,$$where $${\|{\varphi}_{\tau}\|_{\rm Lip}}$$ denotes the Lipschitz constant of $${\varphi_{\tau}}$$. We show that if a metric space X threshold-embeds into a Hilbert space, then X has Markov type 2. As a consequence, planar graph metrics and doubling metrics have Markov type 2, answering questions of Naor, Peres, Schramm, and Sheffield. More generally, if a metric space X threshold-embeds into a p-uniformly smooth Banach space, then X has Markov type p. Our results suggest some non-linear analogs of Kwapien’s theorem. For instance, a subset $${X \subseteq L_1}$$ threshold-embeds into Hilbert space if and only if X has Markov type 2.

[1]  R. Durrett Probability: Theory and Examples , 1993 .

[2]  P. Meyer Sur les relations entre diverses propriétés des processus de Markov , 1966 .

[3]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[4]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[5]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[6]  Yuri Ilan,et al.  A Lower Bound on the Distortion of Embedding Planar Metrics into Euclidean Space , 2003, Discret. Comput. Geom..

[7]  O. Hanner On the uniform convexity ofLp andlp , 1956 .

[8]  P. Assouad Plongements lipschitziens dans ${\bbfR}\sp n$ , 1983 .

[9]  Nathan Linial,et al.  Girth and euclidean distortion , 2002, STOC '02.

[10]  Urs Lang,et al.  Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions , 2004, math/0410048.

[11]  B. Mityagin,et al.  Uniform embeddings of metric spaces and of banach spaces into hilbert spaces , 1985 .

[12]  Assaf Naor,et al.  Some applications of Ball’s extension theorem , 2006, Proceedings of the American Mathematical Society.

[13]  Robert Krauthgamer,et al.  Measured Descent: A New Embedding Method for Finite Metrics , 2004, FOCS.

[14]  B. Maurey,et al.  Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces LP , 1974 .

[15]  W. Johnson,et al.  Characterization of quasi-Banach spaces which coarsely embed into a Hilbert space , 2004, math/0411269.

[16]  G. Schechtman,et al.  Remarks on non linear type and Pisier's inequality , 2002 .

[17]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[18]  O. Kallenberg,et al.  Some dimension-free features of vector-valued martingales , 1991 .

[19]  Philip N. Klein,et al.  Excluded minors, network decomposition, and multicommodity flow , 1993, STOC.

[20]  A. Naor,et al.  Nonlinear spectral calculus and super-expanders , 2012, 1207.4705.

[21]  Stanisław Kwapień,et al.  Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .

[22]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[23]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[24]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[25]  James R. Lee,et al.  On distance scales, embeddings, and efficient relaxations of the cut cone , 2005, SODA '05.

[26]  S. Kwapień,et al.  Random Series and Stochastic Integrals: Single and Multiple , 1992 .

[27]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[28]  James R. Lee,et al.  Genus and the geometry of the cut graph , 2010, SODA '10.

[29]  James R. Lee,et al.  Lp metrics on the Heisenberg group and the Goemans-Linial conjecture , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[30]  G. Pisier Martingales with values in uniformly convex spaces , 1975 .

[31]  James R. Lee,et al.  Metric structures in L1: dimension, snowflakes, and average distortion , 2005, Eur. J. Comb..

[32]  Patrice Assouad Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .

[33]  Stephen Semmes,et al.  On the nonexistence of bilipschitz parameterizations and geometric problems about $A_\infty$-weights , 1996 .

[34]  Assaf Naor,et al.  Metric cotype , 2005, SODA '06.

[35]  J. Cheeger,et al.  Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.

[36]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[37]  J. Bourgain The metrical interpretation of superreflexivity in banach spaces , 1986 .

[38]  Assaf Naor,et al.  Poincaré inequalities, embeddings, and wild groups , 2010, Compositio Mathematica.

[39]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[40]  C. E. Chidume,et al.  Geometric Properties of Banach Spaces and Nonlinear Iterations , 2009 .

[41]  Zongben Xu,et al.  Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces , 1991 .

[42]  Nathan Linial,et al.  On metric Ramsey-type phenomena , 2004 .

[43]  James R. Lee,et al.  Vertex cuts, random walks, and dimension reduction in series-parallel graphs , 2007, STOC '07.

[44]  Assaf Naor,et al.  An introduction to the Ribe program , 2012, 1205.5993.

[45]  A. Naor,et al.  Euclidean quotients of finite metric spaces , 2004, math/0406349.

[46]  D. Burkholder,et al.  Extrapolation and interpolation of quasi-linear operators on martingales , 1970 .

[47]  Keith Ball,et al.  Markov chains, Riesz transforms and Lipschitz maps , 1992 .

[48]  P. Enflo Uniform structures and square roots in topological groups , 1970 .

[49]  T. Laakso Plane with A∞‐Weighted Metric not Bilipschitz Embeddable to Rn , 2002 .