Antenna Preprocessing and Element-Pattern Shaping for Multi-Band mmWave Arrays: Multi-Port Receivers and Antennas

The ability to pre-process incident RF signals on a single-antenna aperture in a multi-port antenna/receiver architecture with reconfigurable element patterns can allow unique functionalities, that are distinct from traditional transceivers with single-port antennas. The multiple ports allow reconfigurable passive spatial signal processing before the transceiver through element-pattern synthesis including element maxima and notch control. In this article, we show that when combined in an MIMO array, tailoring of element patterns through such multi-port receiver-antenna architectures can allow periodic arrays to operate over a wide frequency range, even at element spacings approaching one wavelength long. Such a frequency-reconfigurable operation of scalable arrays is important for future multi-band 5G systems and beyond. When operated at high frequencies in the spatially undersampled regime, array grating lobes can be suppressed by orienting the element-pattern notches toward the grating maxima in a reconfigurable fashion. In addition, the multi-port electromagnetic (EM)–circuit interface can allow spatial signal processing before the transceivers including the passive suppression of a spatial interferer at the antenna interface. Through a codesign methodology between the EM interface and the multi-port receiver architecture, we present an architecture with a bandwidth across 37–73 GHz for broadside incidence, reconfigurable element patterns that allow antenna-level signal processing, spatial, frequency, and partial polarization diversity.

[1]  K. Sengupta,et al.  Load Modulated Balanced mm-Wave CMOS PA with Integrated Linearity Enhancement for 5G applications , 2020, 2020 IEEE/MTT-S International Microwave Symposium (IMS).

[2]  Kaushik Dasgupta,et al.  A 40Gb/s 6pJ/b RX baseband in 28nm CMOS for 60GHz polarization MIMO , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[3]  Mark Yeck,et al.  7.2 A 28GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[4]  Theodore S. Rappaport,et al.  Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? , 2014, IEEE Communications Magazine.

[5]  John L. Volakis,et al.  A Wideband, Wide Scanning Tightly Coupled Dipole Array With Integrated Balun (TCDA-IB) , 2013, IEEE Transactions on Antennas and Propagation.

[6]  Chandrakanth Reddy Chappidi,et al.  Multi-port Active Load Pulling for mm-Wave 5G Power Amplifiers: Bandwidth, Back-Off Efficiency, and VSWR Tolerance , 2020, IEEE Transactions on Microwave Theory and Techniques.

[7]  Chandrakanth Reddy Chappidi,et al.  Antenna Preprocessing and Element-Pattern Shaping for Multi-Band mmWave Arrays: Multi-Port Transmitters and Antennas , 2020, IEEE Journal of Solid-State Circuits.

[8]  Doughnut and Tilted Beam Generation Using a Single Printed Star Antenna , 2009, IEEE Transactions on Antennas and Propagation.

[9]  Kaushik Sengupta,et al.  On-chip sensing and actuation methods for integrated self-healing mm-wave CMOS power amplifier , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[10]  A.F. Molisch,et al.  MIMO systems with antenna selection , 2004, IEEE Microwave Magazine.

[11]  David Murphy,et al.  A 60GHz 144-element phased-array transceiver with 51dBm maximum EIRP and ±60° beam steering for backhaul application , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[12]  F. D. Flaviis,et al.  Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches , 2006, IEEE Transactions on Antennas and Propagation.

[14]  Kaushik Sengupta,et al.  RF and mm-Wave Power Generation in Silicon , 2015 .

[15]  Yuan Du,et al.  A Blocker-Tolerant Current Mode 60-GHz Receiver With 7.5-GHz Bandwidth and 3.8-dB Minimum NF in 65-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[16]  Muhammad Ramlee Kamarudin,et al.  Pattern-Reconfigurable Microstrip Patch Antenna With Multidirectional Beam for WiMAX Application , 2014, IEEE Antennas and Wireless Propagation Letters.

[17]  W. Stutzman,et al.  Spatial, polarization, and pattern diversity for wireless handheld terminals , 2001 .

[18]  K. Sengupta,et al.  Designing Optimal Surface Currents for Efficient On-Chip mm-Wave Radiators With Active Circuitry , 2016, IEEE Transactions on Microwave Theory and Techniques.

[19]  Arun Natarajan,et al.  Reconfigurable X-Band 4×4 Butler array in 32nm CMOS SOI for angle-reject arrays , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[20]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[21]  Benjamin Walker,et al.  A 28-GHz Phased-Array Receiver Front End With Dual-Vector Distributed Beamforming , 2017, IEEE Journal of Solid-State Circuits.

[22]  E. Ayanoglu,et al.  A MIMO System With Multifunctional Reconfigurable Antennas , 2006, IEEE Antennas and Wireless Propagation Letters.

[23]  Vladimir Aparin,et al.  A 28GHz Bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[24]  Jeong-Geun Kim,et al.  76–81-GHz CMOS Transmitter With a Phase-Locked-Loop-Based Multichirp Modulator for Automotive Radar , 2015, IEEE Transactions on Microwave Theory and Techniques.

[25]  Torben Larsen,et al.  Noise Theory of Linear and Nonlinear Circuits , 1995 .

[26]  Harish Krishnaswamy,et al.  A 60 GHz CMOS Full-Duplex Transceiver and Link with Polarization-Based Antenna and RF Cancellation , 2016, IEEE Journal of Solid-State Circuits.

[27]  Seong-Sik Song,et al.  A 28GHz CMOS direct conversion transceiver with packaged antenna arrays for 5G cellular system , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[28]  M. S. Alam,et al.  Beam-Steerable Planar Antenna Using Circular Disc and Four PIN-Controlled Tapered Stubs for WiMAX and WLAN Applications , 2016, IEEE Antennas and Wireless Propagation Letters.

[29]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[30]  Amit Singh,et al.  A fully integrated scalable W-band phased-array module with integrated antennas, self-alignment and self-test , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[31]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[32]  Chandrakanth Reddy Chappidi,et al.  Simultaneously Broadband and Back-Off Efficient mm-Wave PAs: A Multi-Port Network Synthesis Approach , 2018, IEEE Journal of Solid-State Circuits.

[33]  Kaushik Sengupta Integrated Circuits for Terahertz Communication Beyond 100 GHz: Are We There Yet? , 2019, 2019 IEEE International Conference on Communications Workshops (ICC Workshops).

[34]  Robert W. Heath,et al.  MIMO Precoding and Combining Solutions for Millimeter-Wave Systems , 2014, IEEE Communications Magazine.

[35]  D.H. Werner,et al.  The Pareto Optimization of Ultrawideband Polyfractal Arrays , 2008, IEEE Transactions on Antennas and Propagation.

[36]  Harish Krishnaswamy,et al.  9.2 A scalable 0.1-to-1.7GHz spatio-spectral-filtering 4-element MIMO receiver array with spatial notch suppression enabling digital beamforming , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[37]  D. Mirshekar-Syahkal,et al.  Spiral antenna with adaptive radiation pattern under electronic control , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[38]  H. Nakano,et al.  Thickness Reduction and Performance Enhancement of Steerable Square Loop Antenna Using Hybrid High Impedance Surface , 2010, IEEE Transactions on Antennas and Propagation.

[39]  K. Luk,et al.  Low-Cost Wideband Microstrip Antenna Array for 60-GHz Applications , 2014, IEEE Transactions on Antennas and Propagation.

[40]  Kaushik Sengupta,et al.  25.3 A 40-to-330GHz synthesizer-free THz spectroscope-on-chip exploiting electromagnetic scattering , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[41]  Raviraj S. Adve,et al.  Design and Evaluation of Pattern Reconfigurable Antennas for MIMO Applications , 2014, IEEE Transactions on Antennas and Propagation.

[42]  Maryam Rofougaran,et al.  A 16TX/16RX 60 GHz 802.11ad Chipset With Single Coaxial Interface and Polarization Diversity , 2014, IEEE Journal of Solid-State Circuits.

[43]  Kaushik Sengupta,et al.  On-Chip THz Spectroscope Exploiting Electromagnetic Scattering With Multi-Port Antenna , 2016, IEEE Journal of Solid-State Circuits.

[44]  Erik G. Larsson,et al.  Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems , 2011, IEEE Transactions on Communications.

[45]  B. Jeffs,et al.  Gain and Aperture Efficiency for a Reflector Antenna With an Array Feed , 2006, IEEE Antennas and Wireless Propagation Letters.

[46]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[47]  Sandipan Kundu,et al.  A Compact, Supply-Voltage Scalable 45–66 GHz Baseband-Combining CMOS Phased-Array Receiver , 2015, IEEE Journal of Solid-State Circuits.

[48]  Shaoqiu Xiao,et al.  Design of Pattern Reconfigurable Antennas Based on a Two—Element Dipole Array Model , 2013, IEEE Transactions on Antennas and Propagation.

[49]  Kaushik Sengupta,et al.  Frequency Reconfigurable mm-Wave Power Amplifier With Active Impedance Synthesis in an Asymmetrical Non-Isolated Combiner: Analysis and Design , 2017, IEEE Journal of Solid-State Circuits.

[50]  Tadao Nagatsuma,et al.  Terahertz integrated electronic and hybrid electronic–photonic systems , 2018, Nature Electronics.

[51]  H. Nakano,et al.  Dual-Band Low-Profile Capacitively Coupled Beam-Steerable Square-Loop Antenna , 2014, IEEE Transactions on Antennas and Propagation.

[52]  K. Sengupta,et al.  Mutual Synchronization for Power Generation and Beam-Steering in CMOS With On-Chip Sense Antennas Near 200 GHz , 2015, IEEE Transactions on Microwave Theory and Techniques.

[53]  D. Mirshekar-Syahkal,et al.  Pattern steerable square loop antenna , 2007 .

[54]  K. Sengupta,et al.  Broadband PA Architectures with Asymmetrical Combining and Stacked PA cells across 50-70 GHz and 64-110 GHz in 250 nm InP , 2020, 2020 IEEE/MTT-S International Microwave Symposium (IMS).

[55]  Hua Wang,et al.  A 64GHz full-duplex transceiver front-end with an on-chip multifeed self-interference-canceling antenna and an all-passive canceler supporting 4Gb/s modulation in one antenna footprint , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[56]  Sorin P. Voinigescu,et al.  A 19 dBm, 15 Gbaud, 9 bit SOI CMOS Power-DAC Cell for High-Order QAM W-Band Transmitters , 2014, IEEE Journal of Solid-State Circuits.

[57]  Hua Wang,et al.  A Multifeed Antenna for High-Efficiency On-Antenna Power Combining , 2017, IEEE Transactions on Antennas and Propagation.

[58]  Marco Vigilante,et al.  On the Design of Wideband Transformer-Based Fourth Order Matching Networks for ${E}$ -Band Receivers in 28-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[59]  Kaushik Sengupta,et al.  Programmable terahertz chip-scale sensing interface with direct digital reconfiguration at sub-wavelength scales , 2019, Nature Communications.

[60]  Chandrakanth Reddy Chappidi,et al.  Globally Optimal Matching Networks With Lossy Passives and Efficiency Bounds , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[61]  Kenichi Okada,et al.  64-QAM 60-GHz CMOS Transceivers for IEEE 802.11ad/ay , 2017, IEEE Journal of Solid-State Circuits.

[62]  J.T. Bernhard,et al.  Integration of packaged RF MEMS switches with radiation pattern reconfigurable square spiral microstrip antennas , 2006, IEEE Transactions on Antennas and Propagation.

[63]  André Bourdoux,et al.  13.5 A 4-antenna-path beamforming transceiver for 60GHz multi-Gb/s communication in 28nm CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[64]  S.-J. Shi,et al.  Radiation pattern reconfigurable microstrip antenna for WiMAX application , 2015 .

[65]  Khalid Saif,et al.  Mobile Phone Antenna Design , 2015 .

[66]  M. Jensen,et al.  Effects of mutual coupling on interference mitigation with a focal plane array , 2005, IEEE Transactions on Antennas and Propagation.

[67]  Kaushik Sengupta,et al.  A 0.28 THz Power-Generation and Beam-Steering Array in CMOS Based on Distributed Active Radiators , 2012, IEEE Journal of Solid-State Circuits.

[68]  K.F. Warnick,et al.  Optimal Noise Matching for Mutually Coupled Arrays , 2007, IEEE Transactions on Antennas and Propagation.

[69]  Xiaodai Dong,et al.  5G Cellular User Equipment: From Theory to Practical Hardware Design , 2017, IEEE Access.

[70]  Harish Krishnaswamy,et al.  Analog and RF Interference Mitigation for Integrated MIMO Receiver Arrays , 2016, Proceedings of the IEEE.

[71]  Kenichi Okada,et al.  13.3 A 56Gb/s W-band CMOS wireless transceiver , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[72]  M. S. Alam,et al.  Wideband Pattern-Reconfigurable Antenna Using Pair of Radial Radiators on Truncated Ground With Switchable Director and Reflector , 2017, IEEE Antennas and Wireless Propagation Letters.

[73]  D. Werner,et al.  Design of Broadband Planar Arrays Based on the Optimization of Aperiodic Tilings , 2008, IEEE Transactions on Antennas and Propagation.

[74]  Mohammad Fakharzadeh,et al.  A 60 GHz, 802.11ad/WiGig-Compliant Transceiver for Infrastructure and Mobile Applications in 130 nm SiGe BiCMOS , 2015, IEEE Journal of Solid-State Circuits.

[75]  Gabriel M. Rebeiz,et al.  Bi-directional flip-chip 28 GHz phased-array core-chip in 45nm CMOS SOI for high-efficiency high-linearity 5G systems , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[76]  Kaushik Sengupta,et al.  A Multi-Port Dual Polarized Antenna Coupled mm-Wave CMOS Receiver with Element-level Pattern and Notch Programmability and Passive Interferer Rejection Capability , 2019, 2019 IEEE Custom Integrated Circuits Conference (CICC).

[77]  Kaushik Sengupta,et al.  A digital mm-Wave PA architecture with Simultaneous Frequency and back-off Reconfigurability , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[78]  Kaushik Sengupta,et al.  A 26-42 GHz Broadband, Back-off Efficient and Vswr Tolerant CMOS Power Amplifier Architecture for 5G Applications , 2019, 2019 Symposium on VLSI Circuits.

[79]  Kaushik Sengupta,et al.  20.2 A frequency-reconfigurable mm-Wave power amplifier with active-impedance synthesis in an asymmetrical non-isolated combiner , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[80]  A. Hajimiri,et al.  Integrated Self-Healing for mm-Wave Power Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.

[81]  Gabriel M. Rebeiz,et al.  ${W}$ -Band Direct-Modulation >20-Gb/s Transmit and Receive Building Blocks in 32-nm SOI CMOS , 2017, IEEE Journal of Solid-State Circuits.

[82]  Brian Floyd,et al.  20–30 GHz mixer-first receiver in 45-nm SOI CMOS , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[83]  M. Ammann,et al.  Reconfigurable Antenna With Elevation and Azimuth Beam Switching , 2010, IEEE Antennas and Wireless Propagation Letters.