Markovian Architectural Bias of Recurrent Neural Networks

[1]  Douglas L. T. Rohde,et al.  Language acquisition in the absence of explicit negative evidence: how important is starting small? , 1999, Cognition.

[2]  Dana Ron,et al.  The Power of Amnesia , 1993, NIPS.

[3]  C. Lee Giles,et al.  Learning and Extracting Finite State Automata with Second-Order Recurrent Neural Networks , 1992, Neural Computation.

[4]  Whitney Tabor,et al.  Fractal encoding of context‐free grammars in connectionist networks , 2000, Expert Syst. J. Knowl. Eng..

[5]  Raymond L. Watrous,et al.  Induction of Finite-State Languages Using Second-Order Recurrent Networks , 1992, Neural Computation.

[6]  Meir Feder,et al.  A universal finite memory source , 1995, IEEE Trans. Inf. Theory.

[7]  Sandiway Fong,et al.  Natural Language Grammatical Inference with Recurrent Neural Networks , 2000, IEEE Trans. Knowl. Data Eng..

[8]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[9]  Peter Tiño,et al.  Spatial representation of symbolic sequences through iterative function systems , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[10]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[11]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[12]  Peter Tiño,et al.  Predicting the Future of Discrete Sequences from Fractal Representations of the Past , 2001, Machine Learning.

[13]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[14]  P. Bühlmann,et al.  Variable Length Markov Chains: Methodology, Computing, and Software , 2004 .

[15]  Mike Casey,et al.  The Dynamics of Discrete-Time Computation, with Application to Recurrent Neural Networks and Finite State Machine Extraction , 1996, Neural Computation.

[16]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: PRINCIPAL CLASSES OF ASYMPTOTIC TOPOLOGICAL INVARIANTS , 1995 .

[17]  Michael K. Tanenhaus,et al.  Dynamical models of sentence processing , 1999, Cogn. Sci..

[18]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[19]  C. Lee Giles,et al.  Extraction of rules from discrete-time recurrent neural networks , 1996, Neural Networks.

[20]  Paul J. Werbos,et al.  Backpropagation Through Time: What It Does and How to Do It , 1990, Proc. IEEE.

[21]  James L. McClelland,et al.  Finite State Automata and Simple Recurrent Networks , 1989, Neural Computation.

[22]  Panagiotis Manolios,et al.  First-Order Recurrent Neural Networks and Deterministic Finite State Automata , 1994, Neural Computation.

[23]  H. Weiss,et al.  On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle Conjecture , 1996 .

[24]  Isabelle Guyon,et al.  Design of a linguistic postprocessor using variable memory length Markov models , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[25]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[26]  Paul Rodríguez,et al.  A Recurrent Neural Network that Learns to Count , 1999, Connect. Sci..

[27]  Peter Tiño,et al.  Extracting finite-state representations from recurrent neural networks trained on chaotic symbolic sequences , 1999, IEEE Trans. Neural Networks.

[28]  JORMA RISSANEN,et al.  A universal data compression system , 1983, IEEE Trans. Inf. Theory.

[29]  Peter Tiňo,et al.  Finite State Machines and Recurrent Neural Networks -- Automata and Dynamical Systems Approaches , 1995 .

[30]  P. Frasconi,et al.  Representation of Finite State Automata in Recurrent Radial Basis Function Networks , 1996, Machine Learning.

[31]  Peter Tiño,et al.  Learning and Extracting Initial Mealy Automata with a Modular Neural Network Model , 1995, Neural Comput..

[32]  Yoshua Bengio,et al.  The problem of learning long-term dependencies in recurrent networks , 1993, IEEE International Conference on Neural Networks.

[33]  K. Doya,et al.  Bifurcations in the learning of recurrent neural networks , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[34]  James L. McClelland,et al.  Learning Subsequential Structure in Simple Recurrent Networks , 1988, NIPS.

[35]  Jordan B. Pollack,et al.  Analysis of Dynamical Recognizers , 1997, Neural Computation.

[36]  Peter Tiño,et al.  Attractive Periodic Sets in Discrete-Time Recurrent Networks (with Emphasis on Fixed-Point Stability and Bifurcations in Two-Neuron Networks) , 2001, Neural Computation.

[37]  Nick Chater,et al.  Toward a connectionist model of recursion in human linguistic performance , 1999 .

[38]  Ronald J. Williams,et al.  Training recurrent networks using the extended Kalman filter , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.