Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy

ABSTRACT Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigation of microscale associations. Electron microscopy has been used extensively for geomicrobial investigations, and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions by conventional electron microscopy approaches with imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding the nature of interactions between microbial extracellular polymers and their environment.

[1]  Karen J. Murray,et al.  Biogenic manganese oxides: Properties and mechanisms of formation , 2004 .

[2]  K. A. Rich,et al.  Ultrastructural preservation of biofilms formed by non-typeable Hemophilus influenzae , 2004 .

[3]  J. Lloyd,et al.  Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer , 2007, Applied and Environmental Microbiology.

[4]  T J Beveridge,et al.  Freeze-substitution of gram-negative eubacteria: general cell morphology and envelope profiles , 1991, Journal of bacteriology.

[5]  H. Paerl,et al.  Bacterially mediated precipitation in marine stromatolites. , 2001, Environmental microbiology.

[6]  Cryo-electron microscopy of biological nanostructures , 2008 .

[7]  M. Madigan,et al.  Brock Biology of Microorganisms , 1996 .

[8]  H. Lünsdorf,et al.  Cationic hydrous thorium dioxide colloids – a useful tool for staining negatively charged surface matrices of bacteria for use in energy-filtered transmission electron microscopy , 2006, BMC Microbiology.

[9]  Donald R. Metzler,et al.  Stimulating the In Situ Activity of Geobacter Species To Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer , 2003, Applied and Environmental Microbiology.

[10]  D. R. Bond,et al.  Shewanella secretes flavins that mediate extracellular electron transfer , 2008, Proceedings of the National Academy of Sciences.

[11]  C. Prigent-Combaret,et al.  Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. , 2000, Environmental microbiology.

[12]  R. Guerrero,et al.  Comparison between direct methods for determination of microbial cell volume: electron microscopy and electronic particle sizing , 1983, Applied and environmental microbiology.

[13]  Alice Dohnalkova,et al.  Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  John J. Bozzola,et al.  Electron microscopy : principles and techniques for biologists , 1992 .

[15]  C. Burkhardt,et al.  Evaluation of Electron Microscopic Sample Preparation Methods and Imaging Techniques for Characterization of Cell-Mineral Aggregates , 2008 .

[16]  R. Reid,et al.  Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite , 2005 .

[17]  M. Salkinoja-Salonen,et al.  Firm but Slippery Attachment of Deinococcus geothermalis , 2002, Journal of bacteriology.

[18]  A. Frangakis,et al.  Structural analysis of Mycoplasma pneumoniae by cryo-electron tomography. , 2006, Journal of structural biology.

[19]  Samantha B. Reed,et al.  Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1. , 2007, Environmental microbiology.

[20]  Edward R. Landa,et al.  Microbial reduction of uranium , 1991, Nature.

[21]  Jost Wingender,et al.  What are Bacterial Extracellular Polymeric Substances , 1999 .

[22]  T. Beveridge,et al.  High-Resolution Visualization of Pseudomonas aeruginosa PAO1 Biofilms by Freeze-Substitution Transmission Electron Microscopy , 2005, Journal of bacteriology.

[23]  L. Garvie,et al.  High-resolution parallel electron energy-loss spectroscopy of Mn L2,3-edges in inorganic manganese compounds , 1994 .

[24]  A. Decho,et al.  Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes , 1990 .

[25]  E. O'Toole,et al.  Three-Dimensional Macromolecular Organization of Cryofixed Myxococcus xanthus Biofilms as Revealed by Electron Microscopic Tomography , 2009, Journal of bacteriology.

[26]  Ellis Harold Dill Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity , 2006 .

[27]  J. W. Costerton The Biofilm Primer , 2007 .

[28]  C. Edmiston,et al.  Evaluating Adherent Bacteria and Biofilm Using Electron Microscopy , 2000 .

[29]  Hans-Curt Flemming,et al.  The EPS Matrix: The “House of Biofilm Cells” , 2007, Journal of bacteriology.

[30]  Mercedes Berlanga,et al.  Brock Biology of microorganisms 12th edn. , 2008 .

[31]  T. Beveridge,et al.  The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides. , 2007, Microbiology.

[32]  C. Edmiston,et al.  Bacterial biofilms: strategies for preparing glycocalyx for electron microscopy. , 1999, Methods in enzymology.

[33]  T. Beveridge,et al.  Membrane Vesicles: an Overlooked Component of the Matrices of Biofilms , 2006, Journal of bacteriology.

[34]  Jost Wingender,et al.  Microbial Extracellular Polymeric Substances , 1999, Springer Berlin Heidelberg.

[35]  J. McIntosh,et al.  Cellular electron microscopy , 2007 .

[36]  J. Dutcher,et al.  Use of Atomic Force Microscopy and Transmission Electron Microscopy for Correlative Studies of Bacterial Capsules , 2008, Applied and Environmental Microbiology.

[37]  Liang Shi,et al.  c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis , 2006, PLoS biology.

[38]  T J Beveridge,et al.  Effect of chemical fixatives on accurate preservation of Escherichia coli and Bacillus subtilis structure in cells prepared by freeze-substitution , 1990, Journal of bacteriology.

[39]  S. Subramaniam,et al.  Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy , 2007, Proceedings of the National Academy of Sciences.

[40]  A. Beliaev,et al.  MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR‐1 , 2001, Molecular microbiology.

[41]  C. Myers,et al.  Role for Outer Membrane Cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in Reduction of Manganese Dioxide , 2001, Applied and Environmental Microbiology.

[42]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.

[43]  A. Dohnalkova,et al.  Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens , 2002 .

[44]  R. Thorneley Metal ions and bacteria , 1990 .

[45]  Philip E. Long,et al.  Microbiological and Geochemical Heterogeneity in an In Situ Uranium Bioremediation Field Site , 2005, Applied and Environmental Microbiology.

[46]  Kazuya Watanabe,et al.  Coaggregation Facilitates Interspecies Hydrogen Transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus , 2005, Applied and Environmental Microbiology.

[47]  T. Beveridge Bacterial Cell Wall Structure and Implications for Interactions with Metal Ions and Minerals , 2005 .

[48]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[49]  R. B. Jensen,et al.  Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography , 2006, Molecular microbiology.

[50]  J. Duine,et al.  How big is the periplasmic space? , 1990, Trends in biochemical sciences.

[51]  Robert S. Burlage,et al.  Techniques in microbial ecology , 1998 .

[52]  M. Bayer,et al.  Polysaccharide capsule of Escherichia coli: microscope study of its size, structure, and sites of synthesis , 1977, Journal of bacteriology.

[53]  K. Nealson,et al.  Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. , 1994, Annual review of microbiology.

[54]  Derek R. Lovley,et al.  Enzymic uranium precipitation , 1992 .

[55]  W. Ghiorse,et al.  Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. , 2001, Environmental microbiology.

[56]  S. Erlandsen,et al.  High-resolution Visualization of the Microbial Glycocalyx with Low-voltage Scanning Electron Microscopy: Dependence on Cationic Dyes , 2004, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[57]  Nicolas,et al.  Electron microscopy of frozen biological objects: a study using cryosectioning and cryosubstitution , 1998, Journal of microscopy.

[58]  D. J. Bates,et al.  Terminal electron acceptors influence the quantity and chemical composition of capsular exopolymers produced by anaerobically growing Shewanella spp. , 2007, Biomacromolecules.

[59]  B. Arey,et al.  Role of outer‐membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR‐1 , 2010, Geobiology.

[60]  Grigoriy E. Pinchuk,et al.  Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. , 2008, Environmental microbiology.

[61]  Bernhard Guggenheim,et al.  A novel TEM contrasting technique for extracellular polysaccharides in in vitro biofilms , 2007, Microscopy research and technique.

[62]  T J Beveridge,et al.  Periplasmic space and the concept of the periplasm. , 1991, Trends in biochemical sciences.

[63]  W. Röling Subsurface Microbiology and Biogeochemistry , 2001 .

[64]  G. Rivas,et al.  Characterization of heterologous protein-protein interactions using analytical ultracentrifugation. , 1999, Methods.