Learning-based Memory Allocation for C++ Server Workloads
暂无分享,去创建一个
Colin Raffel | Kathryn S. McKinley | David G. Andersen | Mohammad Mahdi Javanmard | Martin Maas | Michael Isard | D. Andersen | M. Isard | Colin Raffel | K. McKinley | Martin Maas | M. Javanmard
[1] Craig Chambers,et al. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing , 2015, Proc. VLDB Endow..
[2] Lu Fang,et al. FACADE: A Compiler and Runtime for (Almost) Object-Bounded Big Data Applications , 2015, ASPLOS.
[3] Christoforos E. Kozyrakis,et al. Towards energy proportionality for large-scale latency-critical workloads , 2014, 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).
[4] Kathryn S. McKinley,et al. Hoard: a scalable memory allocator for multithreaded applications , 2000, SIGP.
[5] Scott A. Mahlke,et al. Profile‐guided automatic inline expansion for C programs , 1992, Softw. Pract. Exp..
[6] Craig Chambers,et al. FlumeJava: easy, efficient data-parallel pipelines , 2010, PLDI '10.
[7] Jin-Soo Kim,et al. Controlling physical memory fragmentation in mobile systems , 2015, ISMM.
[8] Marc Brockschmidt,et al. Learning to Represent Programs with Graphs , 2017, ICLR.
[9] Gu-Yeon Wei,et al. Profiling a warehouse-scale computer , 2015, 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA).
[10] Yuan Yu,et al. TensorFlow: A system for large-scale machine learning , 2016, OSDI.
[11] Kathryn S. McKinley,et al. Age-based garbage collection , 1999, OOPSLA '99.
[12] Gu-Yeon Wei,et al. Mallacc: Accelerating Memory Allocation , 2017, ASPLOS.
[13] Kathryn S. McKinley,et al. Pretenuring for Java , 2001, OOPSLA '01.
[14] Kathryn S. McKinley,et al. Dynamic object sampling for pretenuring , 2004, ISMM '04.
[15] Xi Yang,et al. Taking off the gloves with reference counting Immix , 2013, OOPSLA.
[16] Andrew McGregor,et al. Mesh: compacting memory management for C/C++ applications , 2019, PLDI.
[17] Duarte Patrício,et al. Runtime Object Lifetime Profiler for Latency Sensitive Big Data Applications , 2019, EuroSys.
[18] D. Sculley,et al. Google Vizier: A Service for Black-Box Optimization , 2017, KDD.
[19] David Detlefs,et al. Garbage-first garbage collection , 2004, ISMM '04.
[20] Christopher Olston,et al. TensorFlow-Serving: Flexible, High-Performance ML Serving , 2017, ArXiv.
[21] David A. Cohn,et al. Predicting Lifetimes in Dynamically Allocated Memory , 1996, NIPS.
[22] Michael D. Bond,et al. Efficient context sensitivity for dynamic analyses via calling context uptrees and customized memory management , 2013, OOPSLA.
[23] Youngjin Kwon,et al. Coordinated and Efficient Huge Page Management with Ingens , 2016, OSDI.
[24] Kathryn S. McKinley,et al. Immix: a mark-region garbage collector with space efficiency, fast collection, and mutator performance , 2008, PLDI '08.
[25] David M. Ungar,et al. Generation Scavenging: A non-disruptive high performance storage reclamation algorithm , 1984, SDE 1.
[26] Sergey Ioffe,et al. Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[27] Jeffrey Dean,et al. Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.
[28] Kathryn S. McKinley,et al. Reconsidering custom memory allocation , 2002, OOPSLA '02.
[29] Lawrence D. Jackel,et al. Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.
[30] K. Gopinath,et al. Making Huge Pages Actually Useful , 2018, ASPLOS.
[31] Jason Evans April. A Scalable Concurrent malloc(3) Implementation for FreeBSD , 2006 .
[32] Bradley C. Kuszmaul. SuperMalloc: a super fast multithreaded malloc for 64-bit machines , 2015, ISMM.
[33] Jürgen Schmidhuber,et al. Long Short-Term Memory , 1997, Neural Computation.
[34] Amer Diwan,et al. Inferred call path profiling , 2009, OOPSLA '09.
[35] Osman S. Unsal,et al. Redundant Memory Mappings for fast access to large memories , 2015, 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA).
[36] Michael D. Bond,et al. Breadcrumbs: efficient context sensitivity for dynamic bug detection analyses , 2010, PLDI '10.
[37] Kathryn S. McKinley,et al. Beltway: getting around garbage collection gridlock , 2002, PLDI '02.
[38] Perry Cheng,et al. Myths and realities: the performance impact of garbage collection , 2004, SIGMETRICS '04/Performance '04.
[39] P ChangPohua,et al. Profile-guided automatic inline expansion for C programs , 1992 .
[40] Benjamin G. Zorn,et al. Using lifetime predictors to improve memory allocation performance , 1993, PLDI '93.
[41] Kunihiko Fukushima,et al. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.
[42] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[43] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[44] Hannes Payer,et al. Memento mori: dynamic allocation-site-based optimizations , 2015, ISMM.
[45] Niall Murphy,et al. Site Reliability Engineering: How Google Runs Production Systems , 2016 .
[46] Michael M. Swift,et al. Devirtualizing Memory in Heterogeneous Systems , 2018, ASPLOS.