The Einstein–Podolsky–Rosen Steering and Its Certification

The Einstein–Podolsky–Rosen (EPR) steering is a subtle intermediate correlation between entanglement and Bell nonlocality. It not only theoretically completes the whole picture of non-local effects but also practically inspires novel quantum protocols in specific scenarios. However, a verification of EPR steering is still challenging due to difficulties in bounding unsteerable correlations. In this survey, the basic framework to study the bipartite EPR steering is discussed, and general techniques to certify EPR steering correlations are reviewed.

[1]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[2]  H. P. Robertson The Uncertainty Principle , 1929 .

[3]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[4]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[7]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[8]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[9]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[10]  Tony Leggett,et al.  Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy , 1988 .

[11]  Speakable and unspeakable in quantum mechanics: By J. S. Bell. Pp. 212. Cambridge University Press. 1988. Hardback £25.00, US$44.50; Paperback £8.95, US$14.95 , 1989 .

[12]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[13]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[14]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[15]  Oliver Rudolph On the cross norm criterion for separability , 2003 .

[16]  H. Hofmann,et al.  Violation of local uncertainty relations as a signature of entanglement , 2002, quant-ph/0212090.

[17]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..

[18]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[19]  N. Gisin,et al.  General properties of nonsignaling theories , 2005, quant-ph/0508016.

[20]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[21]  N. Gisin,et al.  Grothendieck's constant and local models for noisy entangled quantum states , 2006, quant-ph/0606138.

[22]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[23]  A. C. Doherty,et al.  Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering , 2007, 0709.0390.

[24]  Teiko Heinosaari,et al.  Notes on Joint Measurability of Quantum Observables , 2008, 0811.0783.

[25]  W. P. Bowen,et al.  Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications , 2008, 0806.0270.

[26]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.

[27]  I. D. Coope,et al.  TRACE INEQUALITIES WITH APPLICATIONS TO ORTHOGONAL REGRESSION AND MATRIX NEARNESS PROBLEMS , 2009 .

[28]  D. J. Saunders,et al.  Experimental EPR-steering using Bell-local states , 2009, 0909.0805.

[29]  S. Wehner,et al.  The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.

[30]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[31]  D. J. Saunders,et al.  Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole , 2011 .

[32]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[33]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[34]  R. Werner,et al.  Observation of one-way Einstein–Podolsky–Rosen steering , 2012, Nature Photonics.

[35]  Eric G. Cavalcanti,et al.  Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations , 2013, 1303.7432.

[36]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[37]  Matthew F. Pusey,et al.  Negativity and steering: A stronger Peres conjecture , 2013, 1305.1767.

[38]  M D Reid,et al.  Genuine multipartite Einstein-Podolsky-Rosen steering. , 2012, Physical review letters.

[39]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[40]  Jing-Ling Chen,et al.  All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering , 2012, Scientific Reports.

[41]  T. Moroder,et al.  Steering bound entangled States: a counterexample to the stronger Peres conjecture. , 2014, Physical review letters.

[42]  Rodrigo Gallego,et al.  The Resource Theory of Steering , 2014, TQC.

[43]  Marc Kaplan,et al.  Fine-grained Einstein-Podolsky-Rosen-steering inequalities , 2014 .

[44]  N. Brunner,et al.  One-way Einstein-Podolsky-Rosen Steering , 2014, 1402.3607.

[45]  Guang-Can Guo,et al.  Experimental demonstration of the Einstein-Podolsky-Rosen steering game based on the all-versus-nothing proof. , 2014, Physical review letters.

[46]  Tamás Vértesi,et al.  Joint measurability, Einstein-Podolsky-Rosen steering, and Bell nonlocality. , 2014, Physical review letters.

[47]  Miguel Navascués,et al.  Quantifying Einstein-Podolsky-Rosen steering. , 2013, Physical review letters.

[48]  David Jennings,et al.  Quantum steering ellipsoids. , 2013, Physical review letters.

[49]  N. Brunner,et al.  Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement , 2014, Nature Communications.

[50]  Qiang Zhang,et al.  Genuine High-Order Einstein-Podolsky-Rosen Steering. , 2015, Physical review letters.

[51]  Jaehak Lee,et al.  Steering criteria via covariance matrices of local observables in arbitrary-dimensional quantum systems , 2015, 1509.02550.

[52]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[53]  Otfried Gühne,et al.  One-to-One Mapping between Steering and Joint Measurability Problems. , 2015, Physical review letters.

[54]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[55]  J. Watrous,et al.  Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. , 2015, Physical review letters.

[56]  Q. Gong,et al.  Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks , 2014, Nature Physics.

[57]  Marek Żukowski,et al.  Geometric Bell-like inequalities for steering , 2015 .

[58]  Koon Tong Goh,et al.  Nonlocal games and optimal steering at the boundary of the quantum set , 2016, 1602.06048.

[59]  Zeng-Bing Chen,et al.  Certifying Einstein-Podolsky-Rosen steering via the local uncertainty principle , 2016 .

[60]  R. M. Angelo,et al.  Quantification of Einstein-Podolski-Rosen steering for two-qubit states , 2015, 1510.08030.

[61]  Yeong-Cherng Liang,et al.  Quantum steerability: Characterization, quantification, superactivation, and unbounded amplification , 2016, 1609.07581.

[62]  Marco T'ulio Quintino,et al.  Superactivation of quantum steering , 2016, 1610.01037.

[63]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[64]  D Cavalcanti,et al.  Quantum steering: a review with focus on semidefinite programming , 2016, Reports on progress in physics. Physical Society.

[65]  Zeng-Bing Chen,et al.  Optimized detection of steering via linear criteria for arbitrary-dimensional states , 2017 .

[66]  Jian-Wei Pan,et al.  Efficient linear criterion for witnessing Einstein-Podolsky-Rosen nonlocality under many-setting local measurements , 2017 .

[67]  A. S. Majumdar,et al.  Cost of Einstein-Podolsky-Rosen steering in the context of extremal boxes. , 2017, 1702.00672.

[68]  P. Kunkel,et al.  Spatially distributed multipartite entanglement enables EPR steering of atomic clouds , 2017, Science.

[69]  Sabine Wollmann,et al.  Conclusive Experimental Demonstration of One-Way Einstein-Podolsky-Rosen Steering. , 2018, Physical review letters.

[70]  Thanh Vu,et al.  Quantum steering with positive operator valued measures , 2017, Journal of Physics A: Mathematical and Theoretical.

[71]  L. Aolita,et al.  A formalism for steering with local quantum measurements , 2017, New Journal of Physics.

[72]  T. Wasak,et al.  Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates. , 2017, Physical review letters.

[73]  M. Fadel,et al.  Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates , 2017, Science.

[74]  Yang Liu,et al.  Device-independent quantum random-number generation , 2018, Nature.

[75]  Géza Tóth,et al.  Entanglement between two spatially separated atomic modes , 2017, Science.