Relationship between wood porosity, wood density and methyl methacrylate impregnation rate

Abstract Mercury intrusion porosimetry (MIP) was used to evaluate the impregnation mechanisms of wood by methyl methacrylate (MMA) through examining the changes in porosity, pore volume, pore size distribution and bulk density of solid wood before and after MMA impregnation. Porosities of MMA-impregnated (hardened) wood samples were lower than those of solid wood samples for six studied species, five hardwoods and one softwood. Densities of hardened wood were enhanced from 45 to 130% depending on the species. The pore volume available for mercury intrusion was shifted from pore d>0.1 µm for solid wood to pore d≤0.1 µm for hardened wood. A pore diameter of 0.1 µm was used as the transition point for MMA impregnation and the increased mercury penetration below this point was attributed to the MMA polymer pore structure. Porosity as an intrinsic property of wood appears to be the main determinant of impregnation rate and polymer retention, especially for porosity with pore diameter >0.1 µm. The results indicate that the MIP technique is an effective tool with which to study the impregnation process.

[1]  E. W. Washburn Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. , 1921, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Stamm Density of Wood Substance, Adsorption by Wood, and Permeability of Wood , 1928 .

[3]  Y. Trenard Comparaison et Interpretation de Courbes Obtenues par Porosimétrie au Mercure sur Diverses Essences de Bois , 1980 .

[4]  B. Bendtsen,et al.  Comparison of mechanical and anatomical properties of eastern cottonwood and Populus hybrid NE-237 , 1981 .

[5]  J. A. Meyer Wood―polymer materials , 1981 .

[6]  Pierre Delage,et al.  Study of the structure of a sensitive Champlain clay and of its evolution during consolidation , 1984 .

[7]  K. Hover,et al.  Mercury porosimetry of cement-based materials and associated correction factors , 1993 .

[8]  G. Dennis,et al.  Effects of coupling agent on the physical properties of wood-polymer composites , 1995 .

[9]  P. Fratzl,et al.  Hydration Dependence of the Wood-Cell Wall Structure in Picea abies. A Small-Angle X-ray Scattering Study , 1996 .

[10]  I. Peszlen,et al.  Effect of age on selected wood quality traits of poplar clones , 1997 .

[11]  O. Güven,et al.  Improvement of mechanical stability of beechwood by radiation-induced in situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate , 1999 .

[12]  S Yokota,et al.  In situ determination of proportion of cell types in wood by Fourier transform Raman spectroscopy. , 1999, Analytical biochemistry.

[13]  O. Güven,et al.  Preparation and properties of some wood/(co)polymer composites , 1999 .

[14]  N. I. El-Awady Wood Polymer Composites Using Thermal and Radiation Techniques , 1999 .

[15]  G. Olgun,et al.  A comparative study of using allyl alcohol based copolymers in the preservation of wood: Oak vs. cedar , 2000 .

[16]  Dayakar Penumadu,et al.  Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry , 2000 .

[17]  O. Güven,et al.  Modification of some mechanical properties of spruce by radiation induced copolymerization of acrylonitrile and methyl methacrylate with allyl glycidyl ether , 2001 .

[18]  Jan Carmeliet,et al.  Characterisation of pore structure by combining mercury porosimetry and micrography , 2001 .

[19]  C. Hill,et al.  Determination of surface area and pore volume of holocellulose and chemically modified wood flour using the nitrogen adsorption technique , 2003, Holz als Roh- und Werkstoff.

[20]  P. Degée,et al.  End-grained wood-polyurethane composites, 1: Synthesis, morphology and characterization , 2004 .

[21]  J. Forsström Fundamental Aspects on the Re-use of Wood Based Fibres : Porous Structure of Fibres and Ink Detachment , 2004 .

[22]  Paulo J. Ferreira,et al.  Mercury intrusion porosimetry in pulp and paper technology , 2005 .

[23]  S. Y. Zhang,et al.  Dimensional stability of wood-polymer composites , 2006 .

[24]  Untersuchungen über die Eignung der Quecksilber-Porosimetrie zur Beurteilung der Imprägnierbarkeit von Holz , 1983, Holz als Roh- und Werkstoff.

[25]  A. Schneider,et al.  Bestimmung der Porengrößenverteilung in Holz mit dem Quecksilber-Porosimeter , 1974, Holz als Roh- und Werkstoff.

[26]  N. Yan,et al.  Characterizing Liquid Resin Penetration In Wood Using A Mercury Intrusion Porosimeter , 2007 .

[27]  Influence of the pore structure of wood on moisture desorption at high relative humidities , 2007 .

[28]  A. Zoulalian,et al.  EXPERIMENTAL STUDY OF THERMAL EFFECT ON OLIVE WOOD POROUS STRUCTURE DURING CARBONIZATION , 2007 .

[29]  Seppo Andersson,et al.  A study of the nanostructure of the cell wall of the tracheids of conifer xylem by x-ray scattering , 2007 .

[30]  T. Krause,et al.  Über die Packungsdichte der Zellwände in Laubhölzern , 2007, Holz als Roh- und Werkstoff.

[31]  A. Schneider Beitrag zur Porositätsanalyse von Holz mit dem Quecksilber-Porosimeter , 1979, Holz als Roh- und Werkstoff.