Using the 500 m MODIS Land Cover Product to Derive a Consistent Continental Scale 30 m Landsat Land Cover Classification

[1]  R. Henderson Signature Extension Using the MASC Algorithm , 1976, IEEE Transactions on Geoscience Electronics.

[2]  T. Minter Methods of extending crop signatures from one area to another , 1979 .

[3]  R. Congalton,et al.  Accuracy assessment: a user's perspective , 1986 .

[4]  Jesslyn F. Brown,et al.  Development of a land-cover characteristics database for the conterminous U.S. , 1991 .

[5]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[6]  J. Townshend,et al.  Global discrimination of land cover types from metrics derived from AVHRR pathfinder data , 1995 .

[7]  David P. Roy,et al.  MODIS land data storage, gridding, and compositing methodology: Level 2 grid , 1998, IEEE Trans. Geosci. Remote. Sens..

[8]  Limin Yang,et al.  Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data , 2000 .

[9]  Feng Gao,et al.  Characterization of North American land cover from NOAA‐AVHRR data using the EOS MODIS Land Cover Classification Algorithm , 2000 .

[10]  Mark A. Friedl,et al.  Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods , 2001, IEEE Trans. Geosci. Remote. Sens..

[11]  Stephen V. Stehman,et al.  Statistical Rigor and Practical Utility in Thematic Map Accuracy Assessment , 2001 .

[12]  Curtis E. Woodcock,et al.  Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors , 2001 .

[13]  C. Small,et al.  A global analysis of urban reflectance , 2005 .

[14]  D. Roy,et al.  Achieving sub-pixel geolocation accuracy in support of MODIS land science , 2002 .

[15]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[16]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[17]  Martin Herold,et al.  Spectral resolution requirements for mapping urban areas , 2003, IEEE Trans. Geosci. Remote. Sens..

[18]  Limin Yang,et al.  An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM+ and high spatial resolution imagery , 2003 .

[19]  Foster J. Provost,et al.  Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction , 2003, J. Artif. Intell. Res..

[20]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[21]  Stacy L. Ozesmi,et al.  Satellite remote sensing of wetlands , 2002, Wetlands Ecology and Management.

[22]  Limin Yang,et al.  Development of a 2001 National land-cover database for the United States , 2004 .

[23]  Giles M. Foody,et al.  Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification , 2004 .

[24]  P. C. Doraiswamya,et al.  Crop condition and yield simulations using Landsat and MODIS , 2004 .

[25]  Darrel L. Williams,et al.  Landsat sensor performance: history and current status , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[26]  A. Belward,et al.  GLC 2000 : a new approach to global land cover mapping from Earth observation data , 2005 .

[27]  E. Mcpherson,et al.  Urban ecosystems and the North American carbon cycle , 2006 .

[28]  S. Goward,et al.  Characterization of the Landsat-7 ETM Automated Cloud-Cover Assessment (ACCA) Algorithm , 2006 .

[29]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[30]  Mark A. Friedl,et al.  Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements , 2006 .

[31]  Giles M. Foody,et al.  The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM , 2006 .

[32]  E. Lambin,et al.  The emergence of land change science for global environmental change and sustainability , 2007, Proceedings of the National Academy of Sciences.

[33]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[34]  Matthew C. Hansen,et al.  Corn and Soybean Mapping in the United States Using MODIS Time‐Series Data Sets , 2007 .

[35]  Martin Herold,et al.  Some challenges in global land cover mapping : An assessment of agreement and accuracy in existing 1 km datasets , 2008 .

[36]  D. Roy,et al.  The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally , 2008 .

[37]  Dengsheng Lu,et al.  Regional mapping of human settlements in southeastern China with multisensor remotely sensed data , 2008 .

[38]  Chengquan Huang,et al.  Use of a dark object concept and support vector machines to automate forest cover change analysis , 2008 .

[39]  D. Roy,et al.  The suitability of decadal image data sets for mapping tropical forest cover change in the Democratic Republic of Congo: implications for the global land survey , 2008 .

[40]  Jennifer A. Miller,et al.  Mapping landcover modifications over large areas : A comparison of machine learning algorithms , 2008 .

[41]  Bicheron Patrice,et al.  GlobCover - Products Description and Validation Report , 2008 .

[42]  James D. Wickham,et al.  Designing a multi-objective, multi-support accuracy assessment of the 2001 National Land Cover Data (NLCD 2001) of the conterminous United States , 2008 .

[43]  Janet Franklin,et al.  Mapping land-cover modifications over large areas: A comparison of machine learning algorithms , 2008 .

[44]  J. Fry,et al.  Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods , 2009 .

[45]  Patrick Hostert,et al.  Land cover mapping of large areas using chain classification of neighboring Landsat satellite images , 2009 .

[46]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[47]  M. Friedl,et al.  Mapping global urban areas using MODIS 500-m data: new methods and datasets based on 'urban ecoregions'. , 2010 .

[48]  Jane Southworth,et al.  Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis , 2010, Remote. Sens..

[49]  R. Mueller,et al.  The 2009 Cropland Data Layer. , 2010 .

[50]  Patrick Hostert,et al.  Mapping megacity growth with multi-sensor data , 2010 .

[51]  David P. Roy,et al.  Accessing free Landsat data via the Internet: Africa's challenge , 2010 .

[52]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[53]  David P. Roy,et al.  Sensitivity analysis of the GEMS soil organic carbon model to land cover land use classification uncertainties under different climate scenarios in Senegal , 2011 .

[54]  David P. Roy,et al.  Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project , 2011 .

[55]  Zhengwei Yang,et al.  Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program , 2011 .

[56]  Chengquan Huang,et al.  Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges , 2012, Int. J. Digit. Earth.

[57]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[58]  D. Roy,et al.  Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods , 2012 .

[59]  C. Woodcock,et al.  Continuous change detection and classification of land cover using all available Landsat data , 2014 .

[60]  Arturo E. Hernandez,et al.  Generation and analysis of the 2005 land cover map for Mexico using 250m MODIS data , 2012 .

[61]  David P. Roy,et al.  The Global Availability of Landsat 5 TM and Landsat 7 ETM+ Land Surface Observations and Implications for Global 30m Landsat Data Product Generation , 2013 .

[62]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[63]  David M. Johnson A 2010 map estimate of annually tilled cropland within the conterminous , 2013 .

[64]  Stephen V. Stehman,et al.  Land-cover change in the conterminous United States from 1973 to 2000 , 2013 .

[65]  Victor Barrena Arroyo,et al.  A land cover map of Latin America and the Caribbean in the framework of the SERENA project , 2013 .

[66]  Conghe Song,et al.  Consistent classification of image time series with automatic adaptive signature generalization , 2013 .

[67]  Le Yu,et al.  Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: a segmentation-based approach , 2013 .

[68]  Bryan C. Pijanowski,et al.  Evidence for increased monoculture cropping in the Central United States , 2013 .

[69]  Chengquan Huang,et al.  Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error , 2013, Int. J. Digit. Earth.

[70]  J. Wickham,et al.  Accuracy assessment of NLCD 2006 land cover and impervious surface , 2013 .

[71]  Giles M. Foody,et al.  Good practices for estimating area and assessing accuracy of land change , 2014 .

[72]  Lei Zhang,et al.  Automatic land-cover update approach integrating iterative training sample selection and a Markov Random Field model , 2014 .

[73]  Carsten Brockmann,et al.  Automated Training Sample Extraction for Global Land Cover Mapping , 2014, Remote. Sens..

[74]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[75]  D. Roy,et al.  Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction☆ , 2014 .

[76]  D. Roy,et al.  Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD) , 2014 .

[77]  Lin Yan,et al.  Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction , 2015 .

[78]  Jin Chen,et al.  Global land cover mapping at 30 m resolution: A POK-based operational approach , 2015 .

[79]  D. Roy,et al.  Conterminous United States crop field size quantification from multi-temporal Landsat data , 2015 .

[80]  Gérard Dedieu,et al.  Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery , 2015, Remote. Sens..

[81]  René Roland Colditz,et al.  An Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms , 2015, Remote. Sens..

[82]  D. Roy,et al.  Image interpretation-guided supervised classification using nested segmentation , 2015 .

[83]  Koreen Millard,et al.  On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping , 2015, Remote. Sens..

[84]  M. Claverie,et al.  Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products , 2015 .

[85]  D. Roy,et al.  MODIS–Landsat fusion for large area 30m burned area mapping , 2015 .

[86]  Suming Jin,et al.  Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information , 2015 .

[87]  Rick L. Lawrence,et al.  The AmericaView classification methods accuracy comparison project: A rigorous approach for model selection , 2015 .

[88]  Chris E. Jordan,et al.  Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA , 2015 .

[89]  Brian P. Salmon,et al.  Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers , 2016, Remote. Sens..

[90]  Michael Schmidt,et al.  A Framework for Large-Area Mapping of Past and Present Cropping Activity Using Seasonal Landsat Images and Time Series Metrics , 2016, Remote. Sens..

[91]  Michael A. Wulder,et al.  Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest , 2016 .

[92]  Gérard Dedieu,et al.  Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas , 2016 .

[93]  Hannes Taubenböck,et al.  How good is the map? A multi-scale cross-comparison framework for global settlement layers: Evidence from Central Europe , 2016 .

[94]  Joanne C. White,et al.  Optical remotely sensed time series data for land cover classification: A review , 2016 .

[95]  David P. Roy,et al.  The global Landsat archive: Status, consolidation, and direction , 2016 .

[96]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[97]  Jian Li,et al.  Best practices for the reprojection and resampling of Sentinel-2 Multi Spectral Instrument Level 1C data , 2016 .

[98]  Hankui K. Zhang,et al.  A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance , 2016 .

[99]  Lin Yan,et al.  An Automated Approach for Sub-Pixel Registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery , 2016, Remote. Sens..

[100]  Crystal B. Schaaf,et al.  Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS , 2016 .

[101]  Luigi Boschetti,et al.  A stratified random sampling design in space and time for regional to global scale burned area product validation. , 2016, Remote sensing of environment.

[102]  Nicholas C. Coops,et al.  Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring , 2016, Int. J. Digit. Earth.

[103]  Valeriy Kovalskyy,et al.  Optimal Solar Geometry Definition for Global Long-Term Landsat Time-Series Bidirectional Reflectance Normalization , 2016, IEEE Trans. Geosci. Remote. Sens..

[104]  Feng Gao,et al.  Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery , 2016 .

[105]  James D. Wickham,et al.  Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD). , 2017, Remote sensing of environment.

[106]  David P. Roy,et al.  Multi-year MODIS active fire type classification over the Brazilian Tropical Moist Forest Biome , 2017, Int. J. Digit. Earth.

[107]  Joanne C. White,et al.  Disturbance-Informed Annual Land Cover Classification Maps of Canada's Forested Ecosystems for a 29-Year Landsat Time Series , 2018 .