New constraints on Cenozoic subduction between India and Tibet

[1]  S. Klemperer,et al.  Strong Variability in the Thermal Structure of Tibetan Lithosphere , 2023, Journal of Geophysical Research: Solid Earth.

[2]  C. Garzione,et al.  Timing and mechanisms of Tibetan Plateau uplift , 2022, Nature Reviews Earth & Environment.

[3]  Yigang Xu,et al.  Intermittent Post‐Paleocene Continental Collision in South Asia , 2021, Geophysical Research Letters.

[4]  Yigang Xu,et al.  Mesozoic intraplate tectonism of East Asia due to flat subduction of a composite terrane slab , 2021 .

[5]  C. Yuan Charmonium and charmoniumlike states at the BESIII experiment , 2021, National science review.

[6]  L. Ding,et al.  Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision , 2020, National science review.

[7]  L. Royden,et al.  Paleocene latitude of the Kohistan–Ladakh arc indicates multistage India–Eurasia collision , 2020, Proceedings of the National Academy of Sciences.

[8]  M. Ducea,et al.  Negligible surface uplift following foundering of thickened central Tibetan lower crust , 2020, Geology.

[9]  J. Chapman,et al.  Quantitatively Tracking the Elevation of the Tibetan Plateau Since the Cretaceous: Insights From Whole‐Rock Sr/Y and La/Yb Ratios , 2020, Geophysical Research Letters.

[10]  A. Colman,et al.  Reconsidering the uplift history and peneplanation of the northern Lhasa terrane, Tibet , 2020, American Journal of Science.

[11]  K. Sigloch,et al.  Geological, geophysical and plate kinematic constraints for models of the India-Asia collision and the post-Triassic central Tethys oceans , 2020 .

[12]  M. Faccenda,et al.  Subduction‐Induced Upwelling of a Hydrous Transition Zone: Implications for the Cenozoic Magmatism in Northeast China , 2019, Journal of Geophysical Research: Solid Earth.

[13]  Albert de Montserrat,et al.  LaCoDe: A Lagrangian two-dimensional thermo-mechanical code for large-strain compressible visco-elastic geodynamical modeling , 2019, Tectonophysics.

[14]  Chang Hong,et al.  The geochemistry of Tibetan lavas: Spatial and temporal relationships, tectonic links and geodynamic implications , 2019, Earth and Planetary Science Letters.

[15]  M. Wilson,et al.  Late Oligocene–early Miocene transformation of postcollisional magmatism in Tibet , 2019, Geology.

[16]  W. Spakman,et al.  Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives , 2019, Tectonophysics.

[17]  Chengshan Wang,et al.  Defining the Limits of Greater India , 2019, Geophysical Research Letters.

[18]  P. DeCelles,et al.  Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses , 2019, American Journal of Science.

[19]  G. Gehrels,et al.  Cenozoic basin evolution of the central Tibetan plateau as constrained by U-Pb detrital zircon geochronology, sandstone petrology, and fission-track thermochronology , 2019, Tectonophysics.

[20]  E. Garzanti The Himalayan Foreland Basin from collision onset to the present: a sedimentary–petrology perspective , 2019, Special Publications.

[21]  C. Shi,et al.  Generation of unstructured meshes in 2-D, 3-D, and spherical geometries with embedded high resolution sub-regions , 2017, Comput. Geosci..

[22]  C. Beaumont,et al.  Inherited terrane properties explain enigmatic post-collisional Himalayan-Tibetan evolution , 2019, Geology.

[23]  M. Menzies,et al.  Craton Destruction 1: Cratonic Keel Delamination Along a Weak Midlithospheric Discontinuity Layer , 2018, Journal of Geophysical Research: Solid Earth.

[24]  M. Menzies,et al.  Craton Destruction 2: Evolution of Cratonic Lithosphere After a Rapid Keel Delamination Event , 2018, Journal of Geophysical Research: Solid Earth.

[25]  Yaolin Shi,et al.  Multi-terrane structure controls the contrasting lithospheric evolution beneath the western and central–eastern Tibetan plateau , 2018, Nature Communications.

[26]  R. Müller,et al.  Dynamic topography of passive continental margins and their hinterlands since the Cretaceous , 2018 .

[27]  A. Yin,et al.  Late Cenozoic magmatic inflation, crustal thickening, and >2 km of surface uplift in central Tibet , 2018 .

[28]  R. Biswas,et al.  Crustal Structure Beneath India and Tibet: New Constraints From Inversion of Receiver Functions , 2017 .

[29]  J. Kimura Modeling chemical geodynamics of subduction zones using the Arc Basalt Simulator version 5 , 2017 .

[30]  S. Bera,et al.  Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon , 2017 .

[31]  M. A. Khan,et al.  The India-Asia collision in north Pakistan: Insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin , 2016 .

[32]  C. Beaumont,et al.  Continental collision with a sandwiched accreted terrane: Insights into Himalayan–Tibetan lithospheric mantle tectonics? , 2016 .

[33]  A. Colman,et al.  Large-scale subduction of continental crust implied by India-Asia mass-balance calculation , 2016 .

[34]  T. Gerya,et al.  Lithosphere delamination in continental collisional orogens: A systematic numerical study , 2016 .

[35]  R. Biswas,et al.  Crustal structure and tectonics of Bangladesh: New constraints from inversion of receiver functions , 2016 .

[36]  L. Rüpke,et al.  A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests , 2015 .

[37]  R. Müller,et al.  A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys , 2015 .

[38]  D. Rubie,et al.  Why cold slabs stagnate in the transition zone , 2015 .

[39]  P. V. Beek,et al.  Dynamic ups and downs of the Himalaya , 2014 .

[40]  A. Replumaz,et al.  The coupling of Indian subduction and Asian continental tectonics , 2014 .

[41]  M. Clark,et al.  Conservation and redistribution of crust during the Indo‐Asian collision , 2014 .

[42]  K. Hoernle,et al.  WITHDRAWN: Correction to “Constraining the Jurassic Extent of Greater India: Tectonic Evolution of the West Australian Margin” , 2012 .

[43]  R. Müller,et al.  Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin , 2012 .

[44]  W. Spakman,et al.  Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia , 2012, Proceedings of the National Academy of Sciences.

[45]  L. Ding,et al.  Thermochronologic evidence for plateau formation in central Tibet by 45 Ma , 2012 .

[46]  D. Yuen,et al.  Bent-shaped plumes and horizontal channel flow beneath the 660 km discontinuity , 2011 .

[47]  R. Pysklywec,et al.  Geodynamic models of mature continental collision: Evolution of an orogen from lithospheric subduction to continental retreat/delamination , 2011 .

[48]  G. Gehrels,et al.  Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone , 2011 .

[49]  B. Steinberger,et al.  Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision , 2011 .

[50]  Chun-yong Wang,et al.  An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings , 2011 .

[51]  J. Eiler,et al.  The paleoaltimetry of Tibet: An isotopic perspective , 2011, American Journal of Science.

[52]  T. Gerya,et al.  Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts , 2011 .

[53]  J. Hasenclever Modeling Mantle Flow and Melting Processes at Mid-Ocean Ridges and Subduction Zones — Development and Application of Numerical Models , 2010 .

[54]  A. Replumaz,et al.  Crustal mass budget and recycling during the India/Asia collision , 2010 .

[55]  Xing Gao,et al.  The boundary between the Indian and Asian tectonic plates below Tibet , 2010, Proceedings of the National Academy of Sciences.

[56]  A. Replumaz,et al.  Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction , 2010 .

[57]  Louis Moresi,et al.  India–Asia convergence driven by the subduction of the Greater Indian continent , 2010 .

[58]  P. Molnar,et al.  Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics , 2009 .

[59]  E. Engdahl,et al.  Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma , 2008 .

[60]  Marcin Dabrowski,et al.  MILAMIN: MATLAB‐based finite element method solver for large problems , 2008 .

[61]  Chengshan Wang,et al.  Constraints on the early uplift history of the Tibetan Plateau , 2008, Proceedings of the National Academy of Sciences.

[62]  Walter R. Roest,et al.  Age, spreading rates, and spreading asymmetry of the world's ocean crust , 2008 .

[63]  L. Ding,et al.  Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet , 2007 .

[64]  J. Ali,et al.  Greater India , 2005 .

[65]  Q. Zhang,et al.  Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism , 2005 .

[66]  Aaron J. Martin,et al.  Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis , 2004 .

[67]  A. Berg,et al.  Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study , 2004 .

[68]  P. G. DeCellesa,et al.  Detrital geochronology and geochemistry of Cretaceous – Early Miocene strata of Nepal : implications for timing and diachroneity of initial Himalayan orogenesis , 2004 .

[69]  Richard F. Katz,et al.  A new parameterization of hydrous mantle melting , 2003 .

[70]  Arie P. van den Berg,et al.  On the role of subducting oceanic plateaus in the development of shallow flat subduction , 2002 .

[71]  Chengshan Wang,et al.  Latest marine horizon north of Qomolangma (Mt Everest): implications for closure of Tethys seaway and collision tectonics , 2002 .

[72]  C. Beaumont,et al.  Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation , 2001, Nature.

[73]  Bertrand Meyer,et al.  Oblique Stepwise Rise and Growth of the Tibet Plateau , 2001, Science.

[74]  A. Castro,et al.  Determination of the fluid–absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4–14 kbar , 2001 .

[75]  J. Phipps Morgan Thermodynamics of pressure release melting of a veined plum pudding mantle , 2001 .

[76]  W. Griffin,et al.  The density structure of subcontinental lithosphere through time , 2001 .

[77]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[78]  Harmen Bijwaard,et al.  Tethyan subducted slabs under India , 1999 .

[79]  Wang,et al.  Surface Deformation and Lower Crustal Flow in Eastern Tibet , 1997, Science.

[80]  T. Lee,et al.  Cenozoic plate reconstruction of Southeast Asia , 1995 .

[81]  Peter Molnar,et al.  Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon , 1993 .

[82]  G. Davies On the emergence of plate tectonics , 1992 .

[83]  J. Besse,et al.  Paleogeographic maps of the continents bordering the Indian Ocean since the Early Jurassic , 1988 .

[84]  W. J. Morgan,et al.  Injection of Indian crust into Tibetan lower crust: A two‐dimensional finite element model study , 1987 .