Verkade Base in FLP Chemistry–From Stoichiometric C–H Bond Cleavage to the Catalytic Dimerization of Alkynes

Stoichiometric and catalytic reactions of terminal alkynes with various FLPs and Lewis acid–base adducts have been investigated. Reactions of phenylacetylene with FLPs composed of the Verkade base ...

[1]  J. Dutasta,et al.  Encapsulation of Azaphosphatranes and Proazaphosphatranes in Confined Spaces. , 2020, ChemPlusChem.

[2]  Changkun Li,et al.  Cobalt-Catalyzed gem-Cross-Dimerization of Terminal Alkynes , 2020 .

[3]  Vivian Zhou,et al.  Active Iron(II) Catalysts toward gem-Specific Dimerization of Terminal Alkynes , 2018, ACS Catalysis.

[4]  Shuhua Li,et al.  "Inverse" Frustrated Lewis Pairs: An Inverse FLP Approach to the Catalytic Metal Free Hydrogenation of Ketones. , 2018, Chemistry.

[5]  Tanya K. Ronson,et al.  Selective Anion Extraction and Recovery Using a FeII 4L4 Cage , 2018, Angewandte Chemie.

[6]  Dustin Kenefake,et al.  Interactions of Verkade's Superbase with Strong Lewis Acids: From Labile Mono- and Binuclear Lewis Acid-Base Complexes to Phosphenium Cations. , 2017, Inorganic chemistry.

[7]  D. Song,et al.  Iron-Catalyzed gem-Specific Dimerization of Terminal Alkynes. , 2017, Angewandte Chemie.

[8]  Tanya K. Ronson,et al.  Anion Binding in Water Drives Structural Adaptation in an Azaphosphatrane-Functionalized FeII4L4 Tetrahedron. , 2017, Journal of the American Chemical Society.

[9]  Shuhua Li,et al.  "Inverse" Frustrated Lewis Pairs--Activation of Dihydrogen with Organosuperbases and Moderate to Weak Lewis Acids. , 2016, Journal of the American Chemical Society.

[10]  G. Erker,et al.  Frustrated Lewis pair chemistry: development and perspectives. , 2015, Angewandte Chemie.

[11]  D. Stephan Frustrated Lewis pairs: from concept to catalysis. , 2015, Accounts of chemical research.

[12]  T. Cantat,et al.  Carbon dioxide reduction to methylamines under metal-free conditions. , 2014, Angewandte Chemie.

[13]  G. Erker,et al.  Formation of unsaturated vicinal Zr(+)/P frustrated Lewis pairs by the unique 1,1-carbozirconation reactions. , 2014, Journal of the American Chemical Society.

[14]  B. Dai,et al.  Reactivity switch enabled by counterion: highly chemoselective dimerization and hydration of terminal alkynes. , 2014, Organic letters.

[15]  L. Harwood,et al.  Organic Superbases: The Concept at a Glance , 2013, Synlett.

[16]  L. Oro,et al.  Pyridine-enhanced head-to-tail dimerization of terminal alkynes by a rhodium-N-heterocyclic-carbene catalyst. , 2013, Chemistry.

[17]  A. Aquino,et al.  A zwitterionic carbanion frustrated by boranes--dihydrogen cleavage with weak Lewis acids via an "inverse" frustrated Lewis pair approach. , 2013, Journal of the American Chemical Society.

[18]  Can-cheng Guo,et al.  A Brønsted acid-catalyzed generation of palladium complexes: efficient head-to-tail dimerization of alkynes. , 2013, Chemical communications.

[19]  D. Stephan,et al.  H2 activation and hydride transfer to olefins by Al(C6F5)3-based frustrated Lewis pairs. , 2012, Angewandte Chemie.

[20]  D. Stephan,et al.  C-H activation of isobutylene using frustrated Lewis Pairs: aluminum and boron σ-allyl complexes. , 2012, Angewandte Chemie.

[21]  T. Satoh,et al.  Organic Superbase as an Efficient Catalyst for Group Transfer Polymerization of Methyl Methacrylate , 2011 .

[22]  J. Verkade,et al.  An electron-rich proazaphosphatrane for isocyanate trimerization to isocyanurates. , 2010, The Journal of organic chemistry.

[23]  Douglas W Stephan,et al.  Frustrated Lewis pairs: metal-free hydrogen activation and more. , 2010, Angewandte Chemie.

[24]  J. Verkade,et al.  P(PhCH(2)NCH(2)CH(2))(3)N: an efficient lewis base catalyst for the synthesis of propargylic alcohols and Morita-Baylis-Hillman adducts via aldehyde alkynylation. , 2009, The Journal of organic chemistry.

[25]  D. Stephan,et al.  Terminal alkyne activation by frustrated and classical Lewis acid/phosphine pairs. , 2009, Journal of the American Chemical Society.

[26]  R. Fröhlich,et al.  Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. , 2007, Chemical communications.

[27]  I. Leito,et al.  Experimental gas-phase basicity scale of superbasic phosphazenes. , 2007, The journal of physical chemistry. A.

[28]  Gregory C. Welch,et al.  Facile heterolytic cleavage of dihydrogen by phosphines and boranes. , 2007, Journal of the American Chemical Society.

[29]  Jason D. Masuda,et al.  Reversible, Metal-Free Hydrogen Activation , 2006, Science.

[30]  W. Uhl,et al.  Synthese eines funktionalen Aluminiumalkinids, Me3C‐C≡C‐AlBr2, und dessen Reaktionen mit der sperrigen Lithiumverbindung LiCH(SiMe3)2 , 2006 .

[31]  J. Verkade,et al.  P(RNCH2CH2)N: efficient catalysts for the cyanosilylation of aldehydes and ketones , 2005 .

[32]  F. Ozawa,et al.  (Z)-Selective cross-dimerization of arylacetylenes with silylacetylenes catalyzed by vinylideneruthenium complexes. , 2005, Chemical communications.

[33]  S. Haddadpour,et al.  Two Different Structural Motifs Observed for Dimeric Dialkylaluminum and Dialkylgallium Alkynides [R2E-C≡C-C6H5]2† , 2004 .

[34]  Z. Hou,et al.  Novel Z-selective head-to-head dimerization of terminal alkynes catalyzed by lanthanide half-metallocene complexes. , 2003, Journal of the American Chemical Society.

[35]  V. Gevorgyan,et al.  Can agostic interaction affect regiochemistry of carbopalladation? Reverse regioselectivity in the palladium-catalyzed dimerization of aryl acetylenes. , 2001, Journal of the American Chemical Society.

[36]  Verkade,et al.  pKa measurements of P(RNCH2CH3)3N , 2000, The Journal of organic chemistry.

[37]  Eisen,et al.  Chemo- and Regioselective Dimerization of Terminal Alkynes Promoted by Methylaluminoxane. , 2000, Organic letters.

[38]  J. Verkade,et al.  P(MeNCH2CH2)3N: An Efficient Promoter for the Reduction of Aldehydes and Ketones with Poly(methylhydrosiloxane) , 1999 .

[39]  J. Verkade,et al.  P(i-PrNCH2CH2)3N: An Effective Lewis Base Promoter for the Allylation of Aromatic Aldehydes with Allyltrimethylsilane , 1999 .

[40]  M. Ephritikhine,et al.  Selective Dimerization of Terminal Alkynes Promoted by the Cationic Actinide Compound [(Et2N)3U][BPh4]. Formation of the Alkyne π-Complex [(Et2N)2U(C⋮CtBu)(η2-HC⋮CtBu)][BPh4] , 1999 .

[41]  M. Beckett,et al.  A convenient n.m.r. method for the measurement of Lewis acidity at boron centres: correlation of reaction rates of Lewis acid initiated epoxide polymerizations with Lewis acidity , 1996 .

[42]  H. J. Heeres,et al.  Catalytic oligomerization of terminal alkynes by lanthanide carbyls (.eta.5-C5Me5)2LnCH(SiMe3)2 (Ln = Y, La, Ce) , 1991 .

[43]  J. Verkade,et al.  The "anomalous" basicity of P(NHCH2CH2)3N relative to P(NMeCH2CH2)3N and p(NBzCH2CH2)3N: a chemical consequence of orbital charge balance? , 1990 .

[44]  G. Stucky,et al.  Organometallic compounds of Group III. XXV. Stereochemistry of polynuclear compounds of the main group elements. Crystal structure and autoreactivity of the diphenyl(phenyl-ethynyl)aluminum dimer. Model for .pi.-complexation between alkynes and organoaluminum compounds , 1974 .

[45]  D. Stephan Frustrated Lewis Pairs. , 2015, Journal of the American Chemical Society.

[46]  Yi‐Hung Liu,et al.  Rhodium-Catalyzed Dimerization of Terminal Alkynes Assisted by MeI , 2005 .