DECISION TREES FOR CLASSIFICATION: A REVIEW AND SOME NEW RESULTS

[1]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[2]  R. Mike Cameron-Jones,et al.  Oversearching and Layered Search in Empirical Learning , 1995, IJCAI.

[3]  Usama M. Fayyad,et al.  The Attribute Selection Problem in Decision Tree Generation , 1992, AAAI.

[4]  E. M. Rounds A combined nonparametric approach to feature selection and binary decision tree design , 1980, Pattern Recognit..

[5]  I. Bratko,et al.  Learning decision rules in noisy domains , 1987 .

[6]  Krzysztof J. Cios,et al.  Continuous ID3 algorithm with fuzzy entropy measures , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[7]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[8]  P. P. Chakrabarti,et al.  Improving Greedy Algorithms by Lookahead-Search , 1994, J. Algorithms.

[9]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[10]  Xizhao Wang,et al.  On the optimization of fuzzy decision trees , 2000, Fuzzy Sets Syst..

[11]  Edward J. Delp,et al.  An Iterative Growing and Pruning Algorithm for Classification Tree Design , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[13]  John Mingers,et al.  Expert Systems—Experiments with Rule Induction , 1986 .

[14]  Gary J. Koehler,et al.  An investigation on the conditions of pruning an induced decision tree , 1994 .

[15]  Steven Salzberg,et al.  Lookahead and Pathology in Decision Tree Induction , 1995, IJCAI.