Periodic quasi-orthogonal spline bases and applications to least-squares curve fitting of digital images
暂无分享,去创建一个
Jorge L. C. Sanz | James Lee Hafner | Myron Flickner | Eduardo J. Rodríguez | M. Flickner | J. Sanz | J. L. Hafner | E. J. Rodríguez
[1] J. Restrepo,et al. Periodized Daubechies wavelets , 1996 .
[2] Paul Dierckx,et al. Curve and surface fitting with splines , 1994, Monographs on numerical analysis.
[3] A. Aldroubi,et al. Polynomial splines and wavelets: a signal processing perspective , 1993 .
[4] Martin Vetterli,et al. Wavelets and recursive filter banks , 1993, IEEE Trans. Signal Process..
[5] Jorge L. C. Sanz,et al. Fast least-squares orthogonal spline fitting and its applications to shape analysis , 1993, Optics & Photonics.
[6] Michael Unser,et al. The L2-Polynomial Spline Pyramid , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[7] Michael Unser,et al. A family of polynomial spline wavelet transforms , 1993, Signal Process..
[8] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[9] Stéphane Mallat,et al. Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..
[10] William H. Press,et al. Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .
[11] Kazuo Toraichi,et al. Periodic spline orthonormal bases , 1988 .
[12] Anil K. Jain,et al. Control point transforms for shape representation and measurement , 1988, Comput. Vis. Graph. Image Process..
[13] P. Sablonnière. Positive spline operators and orthogonal splines , 1988 .
[14] G. Battle. A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .
[15] B. Barsky,et al. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .
[16] F. Hoog. A new algorithm for solving Toeplitz systems of equations , 1987 .
[17] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[18] David Wayne Paglieroni. Control point algorithms for contour processing and shape analysis , 1986 .
[19] James R. Bunch,et al. Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .
[20] P. Sablonnière. Sur les zeros des splines orthogonales , 1985 .
[21] G. Golub. Matrix computations , 1983 .
[22] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[23] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[24] I. J. Schoenberg. Notes on spline functions V. Orthogonal or Legendre splines , 1975 .
[25] P. Bézier. MATHEMATICAL AND PRACTICAL POSSIBILITIES OF UNISURF , 1974 .
[26] W. J. Gordon,et al. B-SPLINE CURVES AND SURFACES , 1974 .
[27] G. Stewart. Introduction to matrix computations , 1973 .
[28] I. J. Schoenberg,et al. Cardinal interpolation and spline functions , 1969 .
[29] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.