Speeding up critical system dynamics through optimized evolution

The number of defects which are generated upon crossing a quantum phase transition can be minimized by choosing properly designed time-dependent pulses. In this work we determine what are the ultimate limits of this optimization. We discuss under which conditions the production of defects across the phase transition is vanishing small. Furthermore we show that the minimum time required to enter this regime is T{approx}{pi}/{Delta}, where {Delta} is the minimum spectral gap, unveiling an intimate connection between an optimized unitary dynamics and the intrinsic measure of the Hilbert space for pure states. Surprisingly, the dynamics is nonadiabatic; this result can be understood by assuming a simple two-level dynamics for the many-body system. Finally we classify the possible dynamical regimes in terms of the action s=T{Delta}.

[1]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[2]  Christine Guerlin,et al.  Dicke quantum phase transition with a superfluid gas in an optical cavity , 2009, Nature.

[3]  T. Toffoli,et al.  Fundamental limit on the rate of quantum dynamics: the unified bound is tight. , 2009, Physical review letters.

[4]  C. Zener Non-Adiabatic Crossing of Energy Levels , 1932 .

[5]  S. Sachdev Quantum Phase Transitions , 1999 .

[6]  A. Polkovnikov,et al.  Breakdown of the adiabatic limit in low-dimensional gapless systems , 2007, 0803.3967.

[7]  J. Dziarmaga Dynamics of a quantum phase transition in the random Ising model: Logarithmic dependence of the defe , 2006, cond-mat/0603814.

[8]  Daniel A. Lidar,et al.  Accuracy versus run time in an adiabatic quantum search , 2010, 1008.0863.

[9]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[10]  Tatsuhiko Koike,et al.  Time-optimal quantum evolution. , 2006, Physical review letters.

[11]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[12]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[13]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[14]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[15]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[16]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[17]  Rosario Fazio,et al.  Adiabatic quantum dynamics of a random Ising chain across its quantum critical point , 2007, 0706.1832.

[18]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.

[19]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[20]  S Montangero,et al.  Optimal control at the quantum speed limit. , 2009, Physical review letters.

[21]  Robert Botet,et al.  Large-size critical behavior of infinitely coordinated systems , 1983 .

[22]  V. Choi,et al.  First-order quantum phase transition in adiabatic quantum computation , 2009, 0904.1387.

[23]  R. Feynman Simulating physics with computers , 1999 .

[24]  La física,et al.  Quantum Phase Transition , 2010 .

[25]  Tommaso Calarco,et al.  Robust optimal quantum gates for Josephson charge qubits. , 2007, Physical review letters.

[26]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[27]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[28]  W. Marsden I and J , 2012 .

[29]  Daniel A. Lidar,et al.  Quantum adiabatic brachistochrone. , 2009, Physical review letters.

[30]  W. Wootters Statistical distance and Hilbert space , 1981 .

[31]  Kamal Bhattacharyya,et al.  Quantum decay and the Mandelstam-Tamm-energy inequality , 1983 .

[32]  Pfeifer How fast can a quantum state change with time? , 1993, Physical review letters.

[33]  D. Bohm,et al.  Time in the Quantum Theory and the Uncertainty Relation for Time and Energy , 1961 .

[34]  S. Lloyd,et al.  Quantum limits to dynamical evolution , 2002, quant-ph/0210197.

[35]  P. Zoller,et al.  Quantum computations with atoms in optical lattices: marker qubits and molecular interactions , 2004, quant-ph/0403197.

[36]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[37]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[38]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[39]  A. Young,et al.  First-order phase transition in the quantum adiabatic algorithm. , 2009, Physical review letters.

[40]  P. Zoller,et al.  Dynamics of a quantum phase transition. , 2005, Physical review letters.

[41]  D. Tannor,et al.  Optimal Control of Multiphoton Excitation: A Black Box or a Flexible Toolkit? , 1998 .

[42]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition and relaxation to a steady state , 2009, 0912.4034.

[43]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[44]  Pieter Kok,et al.  Geometric derivation of the quantum speed limit , 2010, 1003.4870.