Implicitization of Rational Parametric Equations
暂无分享,去创建一个
[1] Xiao-Shan Gao,et al. On the normal parametrization of curves and surfaces , 1991, Int. J. Comput. Geom. Appl..
[2] B. Buchberger,et al. Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[3] Christoph M. Hoffmann,et al. On local implicit approximation and its applications , 1989, TOGS.
[4] Bruno Buchberger,et al. Applications of Gro¨bner bases in non-linear computational geometry , 1988 .
[5] C. Hoffmann. Algebraic curves , 1988 .
[6] M. Artin,et al. Some Elementary Examples of Unirational Varieties Which are Not Rational , 1972 .
[7] E. Chionh. Base points, resultants, and the implicit representation of rational surfaces , 1990 .
[8] Guido Castelnuovo. Sulla razionalità delle involuzioni piane , 1894 .
[9] Heinz Kredel,et al. Computing Dimension and Independent Sets for Polynomial Ideals , 1988, J. Symb. Comput..
[10] Dinesh Manocha. Regular curves and proper parametrizations , 1990, ISSAC '90.
[11] Bruno Buchberger,et al. Applications of Gröbner Bases in Non-linear Computational Geometry , 1987, Trends in Computer Algebra.
[12] Joe Warren,et al. On the Applications of Multi-Equational Resultants , 1988 .
[13] Ron Goldman,et al. Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..
[14] Dinesh Manocha,et al. Implicitizing Rational Parametric Surfaces , 1990 .
[15] Xiao-Shan Gao,et al. Computations with parametric equations , 1991, ISSAC '91.
[16] Patrizia M. Gianni,et al. Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..
[17] Thomas W. Sederberg,et al. Improperly parametrized rational curves , 1986, Comput. Aided Geom. Des..
[18] David Shannon,et al. Using Gröbner Bases to Determine Algebra Membership Split Surjective Algebra Homomorphisms Determine Birational Equivalence , 1988, J. Symb. Comput..
[19] T. Willmore. Algebraic Geometry , 1973, Nature.
[20] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[21] C. Hoffmann. Algebraic and Numerical Techniques for Offsets and Blends , 1990 .