Implicitization of Rational Parametric Equations

Based on the Grobner basis method, we present algorithms for a complete solution of the following problems in the implicitization of a set of rational parametric equations. (1) To find a basis of the implicit prime ideal determined by a set of rational parametric equations. (2) To decide whether the parameters of a set of rational parametric equations are independent. (3) If the parameters of a set of rational parametric equations are not independent, to reparameterize the parametric equations so that the new parametric equations have independent parameters. (4) To compute the inversion maps of parametric equations, and as a consequence, to give a method to decide whether a set of parametric equations is proper. (5) In the case of algebraic curves, to find proper reparameterization for a set of improper parametric equations.

[1]  Xiao-Shan Gao,et al.  On the normal parametrization of curves and surfaces , 1991, Int. J. Comput. Geom. Appl..

[2]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[3]  Christoph M. Hoffmann,et al.  On local implicit approximation and its applications , 1989, TOGS.

[4]  Bruno Buchberger,et al.  Applications of Gro¨bner bases in non-linear computational geometry , 1988 .

[5]  C. Hoffmann Algebraic curves , 1988 .

[6]  M. Artin,et al.  Some Elementary Examples of Unirational Varieties Which are Not Rational , 1972 .

[7]  E. Chionh Base points, resultants, and the implicit representation of rational surfaces , 1990 .

[8]  Guido Castelnuovo Sulla razionalità delle involuzioni piane , 1894 .

[9]  Heinz Kredel,et al.  Computing Dimension and Independent Sets for Polynomial Ideals , 1988, J. Symb. Comput..

[10]  Dinesh Manocha Regular curves and proper parametrizations , 1990, ISSAC '90.

[11]  Bruno Buchberger,et al.  Applications of Gröbner Bases in Non-linear Computational Geometry , 1987, Trends in Computer Algebra.

[12]  Joe Warren,et al.  On the Applications of Multi-Equational Resultants , 1988 .

[13]  Ron Goldman,et al.  Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..

[14]  Dinesh Manocha,et al.  Implicitizing Rational Parametric Surfaces , 1990 .

[15]  Xiao-Shan Gao,et al.  Computations with parametric equations , 1991, ISSAC '91.

[16]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[17]  Thomas W. Sederberg,et al.  Improperly parametrized rational curves , 1986, Comput. Aided Geom. Des..

[18]  David Shannon,et al.  Using Gröbner Bases to Determine Algebra Membership Split Surjective Algebra Homomorphisms Determine Birational Equivalence , 1988, J. Symb. Comput..

[19]  T. Willmore Algebraic Geometry , 1973, Nature.

[20]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[21]  C. Hoffmann Algebraic and Numerical Techniques for Offsets and Blends , 1990 .