Security problem on arbitrated quantum signature schemes

Many arbitrated quantum signature schemes implemented with the help of a trusted third party have been developed up to now. In order to guarantee unconditional security, most of them take advantage of the optimal quantum one-time encryption based on Pauli operators. However, in this paper we point out that the previous schemes provide security only against a total break attack and show in fact that there exists an existential forgery attack that can validly modify the transmitted pair of message and signature. In addition, we also provide a simple method to recover security against the proposed attack.

[1]  Hwayean Lee,et al.  Arbitrated quantum signature scheme with message recovery , 2004 .

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Joseph M Renes,et al.  Structured codes improve the Bennett-Brassard-84 quantum key rate. , 2008, Physical review letters.

[4]  Christine Silberhorn,et al.  Recent developments in quantum key distribution: Theory and practice , 2007, 0712.0517.

[5]  N. Lutkenhaus,et al.  Comment on ``Arbitrated quantum-signature scheme'' , 2008, 0806.0854.

[6]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[7]  V. Roychowdhury,et al.  Optimal encryption of quantum bits , 2000, quant-ph/0003059.

[8]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[9]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[10]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[11]  Qin Li,et al.  Arbitrated quantum signature scheme using Bell states , 2009 .

[12]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[13]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[14]  Guihua Zeng Reply to “Comment on ‘Arbitrated quantum-signature scheme’ ” , 2008 .

[15]  C. G. Peterson,et al.  Long-distance quantum key distribution in optical fibre , 2006, quant-ph/0607177.

[16]  Dave Cliff,et al.  In/Proceedings of the 15th IEEE International Conference on the Engineering of Complex Computer Systems/ (ICECCS 2010), Oxford , 2010 .

[17]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[18]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[19]  Daowen Qiu,et al.  Security analysis and improvements of arbitrated quantum signature schemes , 2010 .

[20]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[21]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[22]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .