What Is the Role of the Kink Instability in Solar Coronal Eruptions

We report the results of two simple studies that seek observational evidence that solar coronal loops are unstable to the MHD kink instability above a certain critical value of the total twist. First, we have used Yohkoh soft X-ray telescope image sequences to measure the shapes of 191 X-ray sigmoids and to determine the histories of eruption (evidenced by cusp and arcade signatures) of their associated active regions. We find that the distribution of sigmoid shapes is quite narrow and the frequency of eruption does not depend significantly on shape. Second, we have used Mees Solar Observatory vector magnetograms to estimate the large-scale total twist of active regions in which flare-related signatures of eruption are observed. We find no evidence of eruption for values of large-scale total twist remotely approaching the threshold for the kink instability.

[1]  S. Antiochos,et al.  A Model for Solar Coronal Mass Ejections , 1998, astro-ph/9807220.

[2]  David M. Rust,et al.  Helical magnetic fields in filaments , 1994 .

[3]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[4]  Sarah E. Gibson,et al.  The Emergence of a Twisted Magnetic Flux Tube into a Preexisting Coronal Arcade , 2003 .

[5]  S. Kahler The morphological and statistical properties of solar X-ray events with long decay times , 1977 .

[6]  D. Schnack,et al.  Dynamical evolution of twisted magnetic flux tubes. I, Equilibrium and linear stability , 1990 .

[7]  David F. Webb,et al.  Coronal mass ejections: origins, evolution, and role in space weather , 2000 .

[8]  D. Mickey The Haleakala Stokes polarimeter , 1985 .

[9]  H. Hudson,et al.  Yohkoh SXT Observations of X-Ray “Dimming” Associated with a Halo Coronal Mass Ejection , 1997 .

[10]  J. Owens,et al.  The Soft X-ray Telescope for the SOLAR-A mission , 1991 .

[11]  Norbert Seehafer,et al.  Electric current helicity in the solar atmosphere , 1990 .

[12]  A. Pevtsov,et al.  Helicity Evolution in Emerging Active Regions , 2003 .

[13]  勝川 行雄 Multi-Wavelength Observations of Coronal Structure and Dynamics , 2002 .

[14]  S. Kahler Solar Flares and Coronal Mass Ejections , 1992 .

[15]  B. Vršnak,et al.  Stability of prominences exposing helical-like patterns , 1991 .

[16]  L. Harra,et al.  Long term evolution of a non-active region sigmoid and its CME activity , 2001 .

[17]  T. Magara,et al.  Sigmoid Structure of an Emerging Flux Tube , 2001 .

[18]  A. Pevtsov,et al.  Hemispheric Helicity Trend for Solar Cycle 23 , 2001 .

[19]  Flux-Tube Twist Resulting from Helical Turbulence: The Σ-Effect , 1998 .

[20]  H. Hudson,et al.  X‐ray coronal changes during Halo CMEs , 1998 .

[21]  A. Pevtsov,et al.  Patterns of Helicity in Solar Active Regions , 1994 .

[22]  H. Hudson,et al.  Sigmoidal morphology and eruptive solar activity , 1999 .

[23]  Tamas I. Gombosi,et al.  A Three-dimensional Flux Rope Model for Coronal Mass Ejections Based on a Loss of Equilibrium , 2003 .

[24]  A. Pevtsov,et al.  Properties of Magnetic Clouds and Geomagnetic Storms Associated with Eruption of Coronal Sigmoids , 2022 .

[25]  Eric Ronald Priest,et al.  Solar magneto-hydrodynamics , 1982 .

[26]  A. Pevtsov,et al.  Latitudinal variation of helicity of photospheric magnetic fields , 1995 .

[27]  D. Rust,et al.  Evidence for Helically Kinked Magnetic Flux Ropes in Solar Eruptions , 1996 .

[28]  Alexei A. Pevtsov,et al.  Magnetic Helicity in Space and Laboratory Plasmas , 1999 .

[29]  A. Pevtsov,et al.  On the Subphotospheric Origin of Coronal Electric Currents , 1997 .