The bilinear complexity and practical algorithms for matrix multiplication

A method for deriving bilinear algorithms for matrix multiplication is proposed. New estimates for the bilinear complexity of a number of problems of the exact and approximate multiplication of rectangular matrices are obtained. In particular, the estimate for the boundary rank of multiplying 3 × 3 matrices is improved and a practical algorithm for the exact multiplication of square n × n matrices is proposed. The asymptotic arithmetic complexity of this algorithm is O(n2.7743).

[1]  V. Strassen Gaussian elimination is not optimal , 1969 .

[2]  J. M. Landsberg,et al.  Geometry and the complexity of matrix multiplication , 2007, ArXiv.

[3]  Shmuel Winograd,et al.  On multiplication of 2 × 2 matrices , 1971 .

[4]  L. R. Kerr,et al.  On Minimizing the Number of Multiplications Necessary for Matrix Multiplication , 1969 .

[5]  Arnold Schönhage,et al.  Partial and Total Matrix Multiplication , 1981, SIAM J. Comput..

[6]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[7]  Dario Bini,et al.  Stability of fast algorithms for matrix multiplication , 1980 .

[8]  Valery B. Alekseyev,et al.  On the Complexity of Some Algorithms of Matrix Multiplication , 1985, J. Algorithms.

[9]  S. K. Sen,et al.  Open problems in computational linear algebra , 2005 .

[10]  Markus Bläser,et al.  On the complexity of the multiplication of matrices of small formats , 2003, J. Complex..

[11]  Julian D. Laderman,et al.  On practical algorithms for accelerated matrix multiplication , 1992 .

[12]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[13]  Thomas Rauber,et al.  Combining building blocks for parallel multi-level matrix multiplication , 2008, Parallel Comput..

[14]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[15]  A. Smirnov,et al.  On the exact and approximate bilinear complexities of multiplication of 4×2 and 2×2 matrices , 2013 .

[16]  N. Bakhvalov Numerical methods : analysis, algebra, ordinary differential equations , 1977 .

[17]  Igor E. Kaporin,et al.  The aggregation and cancellation techniques as a practical tool for faster matrix multiplication , 2004, Theor. Comput. Sci..

[18]  Rodney W. Johnson,et al.  Noncommutative Bilinear Algorithms for 3 x 3 Matrix Multiplication , 1986, SIAM J. Comput..

[19]  R. Brent Algorithms for matrix multiplication , 1970 .

[20]  Dario Bini Relations between exact and approximate bilinear algorithms. Applications , 1980 .

[21]  Julian D. Laderman,et al.  A noncommutative algorithm for multiplying $3 \times 3$ matrices using 23 multiplications , 1976 .