Two New Regularity Criteria for the 3D Navier-Stokes Equations via Two Entries of the Velocity Gradient Tensor

We consider the Cauchy problem for the incompressible Navier-Stokes equations in R3, and provide two new regularity criteria involving only two entries of the Jacobian matrix of the velocity field.

[1]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[2]  Zujin Zhang A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component , 2012 .

[3]  P. Constantin,et al.  Topics in mathematical fluid mechanics , 2013 .

[4]  Yong Zhou Weighted regularity criteria for the three-dimensional Navier—Stokes equations , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  Edriss S. Titi,et al.  Regularity Criteria for the Three-dimensional Navier-Stokes Equations , 2008 .

[6]  Song Jiang,et al.  On regularity criteria for the n-dimensional Navier–Stokes equations in terms of the pressure , 2008 .

[7]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[8]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[9]  Yong Zhou,et al.  A New Regularity Criterion for the Navier-Stokes Equations in Terms of the Gradient of One Velocity Component , 2002 .

[10]  Igor Kukavica,et al.  One component regularity for the Navier–Stokes equations , 2006 .

[11]  Patrick Penel,et al.  Mathematical Fluid Mechanics , 2001 .

[12]  Zheng-an Yao,et al.  Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations , 2011 .

[13]  Igor Kukavica,et al.  Navier-Stokes equations with regularity in one direction , 2007 .

[14]  Yong Zhou,et al.  On a regularity criterion for the Navier–Stokes equations involving gradient of one velocity component , 2009 .

[15]  Edriss S. Titi,et al.  Global Regularity Criterion for the 3D Navier–Stokes Equations Involving One Entry of the Velocity Gradient Tensor , 2010, 1005.4463.

[16]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[17]  Yong Zhou,et al.  Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain , 2004 .

[18]  Yong Zhou,et al.  A new regularity criterion for weak solutions to the Navier–Stokes equations , 2005 .

[19]  Da Veiga,et al.  A new regularity class for the Navier-Stokes equations in R^n , 1995 .

[20]  Milan Pokorný,et al.  Some New Regularity Criteria for the Navier-Stokes Equations Containing Gradient of the Velocity , 2004 .

[21]  V. Sverák,et al.  Backward Uniqueness for Parabolic Equations , 2003 .

[22]  Zujin Zhang Remarks on the regularity criteria for generalized MHD equations , 2011 .

[23]  Xicheng Zhang,et al.  A regularity criterion for the solutions of 3D Navier–Stokes equations , 2008 .

[24]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[25]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[26]  Zhang Zhifei,et al.  Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in R 3 , 2005 .

[27]  Yong Zhou,et al.  On the regularity of the solutions of the Navier–Stokes equations via one velocity component , 2010 .

[28]  Luigi C. Berselli,et al.  On the regularizing effect of the vorticity direction in incompressible viscous flows , 2002, Differential and Integral Equations.

[29]  Yong Zhou,et al.  A New Regularity Criterion for the Navier-Stokes Equations in Terms of the Direction of Vorticity , 2005 .

[30]  Patrick Penel,et al.  Anisotropic and Geometric Criteria for Interior Regularity of Weak Solutions to the 3D Navier—Stokes Equations , 2001 .

[31]  Jae Myoung Kim On regularity criteria of the Navier–Stokes equations in bounded domains , 2010 .

[32]  Chongsheng Cao,et al.  Sufficient conditions for the regularity to the 3 D Navier-Stokes equations , 2009 .

[33]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[34]  Milan Pokorný,et al.  On Anisotropic Regularity Criteria for the Solutions to 3D Navier–Stokes Equations , 2011 .

[35]  Yong Zhou,et al.  On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $$\mathbb{R}^{N}$$ , 2006 .