Arctic Ocean Tides from GRACE Satellite Accelerations

[1] Models are routinely used to remove the effects of global ocean tides from GRACE data during processing to reduce temporal aliasing into monthly GRACE solutions. These models have typically been derived using data from satellite altimeters such as TOPEX/Poseidon. Therefore the Arctic ocean components of tide models are not constrained by altimetry data, potentially resulting in errors that are likely to alias into monthly GRACE gravity fields at all latitudes. Seven years of GRACE inter-satellite accelerations are inverted to solve for corrections to the amplitude and phase of major solar and lunar ocean tides at latitudes north of 50°N using a mascon approach. The tide model originally applied to our data was FES2004, truncated to maximum degree lmax = 90. Simulations are performed to verify that our inversion algorithm works as designed. Uncertainty estimates are derived from tidal solutions on land, and by subtracting two independent solutions that each use 3.5 years of data. Features above the noise floor in the M2, K1, S2, and O1 solutions likely represent errors in FES2004. Errors due to truncating the spherical harmonic expansion of FES2004 are too small, and errors in the land mask model (needed to transform sea surface heights into mass) only affect coastal areas and do not produce similar relative amplitudes for any examined tides. In the oceans north of 50°N, these residuals tend to reduce the FES2004 amplitudes for M2, K1, S2, and O1. Reductions in the variance of accelerations not used in our inversion suggest that our results can be used to improve GRACE processing.

[1]  Matt A. King,et al.  Ocean tides in the Weddell Sea: new observations on the Filchner-Ronne and Larsen C ice shelves and model validation , 2011 .

[2]  Shin‐Chan Han,et al.  One centimeter-level observations of diurnal ocean tides from global monthly mean time-variable gravity fields , 2010 .

[3]  E. Muñoz,et al.  Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation , 2010 .

[4]  M. Bevis,et al.  Spread of ice mass loss into northwest Greenland observed by GRACE and GPS , 2010 .

[5]  R. Ray,et al.  Assimilation of GRACE tide solutions into a numerical hydrodynamic inverse model , 2009 .

[6]  R. Ray,et al.  Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data , 2009 .

[7]  Richard Biancale,et al.  Quantifying FES2004 S2 tidal model from multiple space-geodesy techniques, GPS and GRACE, over North West Australia , 2009 .

[8]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[9]  Matt A. King,et al.  Antarctic ice mass balance estimates from GRACE: Tidal aliasing effects , 2008 .

[10]  J. Willis,et al.  Assessing the globally averaged sea level budget on seasonal to interannual timescales , 2008 .

[11]  Shin‐Chan Han,et al.  Ocean tidal solutions in Antarctica from GRACE inter‐satellite tracking data , 2007 .

[12]  R. J. Tayler,et al.  New Computations of the Tide‐generating Potential , 2007 .

[13]  M. Steele,et al.  Steric sea level change in the northern seas , 2006 .

[14]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[15]  S. Desai,et al.  Application of the convolution formalism to the ocean tide potential: Results from the Gravity Recovery and Climate Experiment (GRACE) , 2006 .

[16]  C. Shum,et al.  GRACE observations of M2 and S2 ocean tides underneath the Filchner‐Ronne and Larsen ice shelves, Antarctica , 2005 .

[17]  S. Kudryavtsev Improved harmonic development of the Earth tide-generating potential , 2004 .

[18]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[19]  D. Rowlands,et al.  Tidal Models in a New Era of Satellite Gravimetry , 2003 .

[20]  O. Andersen,et al.  Correcting GRACE gravity fields for ocean tide effects , 2002 .

[21]  Anatoli L. Levshin,et al.  A Fast and Reliable Method for Surface Wave Tomography , 2001 .

[22]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[23]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[24]  Torsten Hartmann,et al.  The HW95 tidal potential catalogue , 1995 .

[25]  P. Bender,et al.  Lunar Laser Ranging: A Continuing Legacy of the Apollo Program , 1994, Science.

[26]  J. Laskar,et al.  Numerical expressions for precession formulae and mean elements for the Moon and the planets. , 1994 .

[27]  F. Dahlen Effect of the Earth's ellipticity on the lunar tidal potential , 1993 .

[28]  Richard D. Ray,et al.  Energetics of global ocean tides from Geosat altimetry , 1991 .

[29]  John M. Wahr,et al.  Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .

[30]  E. W. Schwiderski,et al.  On charting global ocean tides , 1980 .

[31]  A. J. Jerri Correction to "The Shannon sampling theorem—Its various extensions and applications: A tutorial review" , 1979 .

[32]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[33]  K. Lambeck Effects of tidal dissipation in the oceans on the Moon's orbit and the Earth's Rotation , 1975 .

[34]  D. E. Cartwright,et al.  Corrected Tables of Tidal Harmonics , 1973 .

[35]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[36]  W. Munk,et al.  Tidal spectroscopy and prediction , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[37]  J. Proudman The condition that a long period tide shall follow the equilibrium law , 1960 .

[38]  A. T. Doodson The Harmonic Development of the Tide-Generating Potential , 1921 .

[39]  Rounding-off errors in matrix processes Quart Universal Turing Machine , 2011 .

[40]  D. Rowlands,et al.  Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions , 2008, Journal of Glaciology.

[41]  J. Wahr Time-Variable Gravity from Satellites , 2007 .

[42]  R. Ray,et al.  FAST TRACK PAPER: Tide model errors and GRACE gravimetry: towards a more realistic assessment , 2006 .

[43]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[44]  Gerard Petit,et al.  IERS Conventions (2003) , 2004 .

[45]  William H. Press,et al.  Numerical recipes in C , 2002 .

[46]  W. Munk Once again: once again—tidal friction , 1997 .

[47]  Paul Melchior,et al.  The Tides of Planet Earth , 1978 .

[48]  W. H. Reid,et al.  Mathematical problems in the geophysical sciences , 1971 .

[49]  A. Turing ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .