The Effect of Network Topology on Credit Network Throughput

[1]  Ori Rottenstreich,et al.  Demand-aware Channel Topologies for Off-chain Blockchain Payments , 2021, IACR Cryptol. ePrint Arch..

[2]  Stefan Schmid,et al.  Demand-Aware Payment Channel Networks , 2020, ArXiv.

[3]  Pedro Moreno-Sanchez,et al.  A Quantitative Analysis of Security, Anonymity and Scalability for the Lightning Network , 2020, 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).

[4]  Ashish Goel,et al.  Liquidity in Credit Networks with Constrained Agents , 2019, WWW.

[5]  G. Fanti,et al.  Privacy-Utility Tradeoffs in Routing Cryptocurrency over Payment Channel Networks , 2019, Proc. ACM Meas. Anal. Comput. Syst..

[6]  G. Fanti,et al.  High Throughput Cryptocurrency Routing in Payment Channel Networks , 2018, NSDI.

[7]  Hong Xu,et al.  Flash: efficient dynamic routing for offchain networks , 2019, CoNEXT.

[8]  Pramod Viswanath,et al.  Routing Cryptocurrency with the Spider Network , 2018, HotNets.

[9]  Aviv Zohar,et al.  Avoiding Deadlocks in Payment Channel Networks , 2018, DPM/CBT@ESORICS.

[10]  Ian Goldberg,et al.  Settling Payments Fast and Private: Efficient Decentralized Routing for Path-Based Transactions , 2017, NDSS.

[11]  Sonia Fahmy,et al.  Mind Your Credit: Assessing the Health of the Ripple Credit Network , 2017, WWW.

[12]  Joel Nishimura,et al.  Configuring Random Graph Models with Fixed Degree Sequences , 2016, SIAM Rev..

[13]  Giulio Malavolta,et al.  Concurrency and Privacy with Payment-Channel Networks , 2017, IACR Cryptol. ePrint Arch..

[14]  Giulio Malavolta,et al.  SilentWhispers: Enforcing Security and Privacy in Decentralized Credit Networks , 2017, NDSS.

[15]  James P. Gleeson,et al.  Simple and accurate analytical calculation of shortest path lengths , 2016, ArXiv.

[16]  Minas Gjoka,et al.  Construction of simple graphs with a target joint degree matrix and beyond , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[17]  Christian Decker,et al.  A Fast and Scalable Payment Network with Bitcoin Duplex Micropayment Channels , 2015, SSS.

[18]  Ankit Singla,et al.  High Throughput Data Center Topology Design , 2013, NSDI.

[19]  Pili Hu,et al.  A Survey and Taxonomy of Graph Sampling , 2013, ArXiv.

[20]  Joohwan Kim,et al.  Real-Time Peer-to-Peer Streaming Over Multiple Random Hamiltonian Cycles , 2013, IEEE Transactions on Information Theory.

[21]  Michael P. Wellman,et al.  Strategic Formation of Credit Networks , 2012, WWW 2012.

[22]  Alejandro López-Ortiz,et al.  REWIRE: An optimization-based framework for unstructured data center network design , 2012, 2012 Proceedings IEEE INFOCOM.

[23]  Ankit Singla,et al.  Jellyfish: Networking Data Centers Randomly , 2011, NSDI.

[24]  Isabelle Stanton,et al.  Constructing and sampling graphs with a prescribed joint degree distribution , 2011, JEAL.

[25]  Petar Popovski,et al.  Design and Analysis of LT Codes with Decreasing Ripple Size , 2010, IEEE Transactions on Communications.

[26]  Emin Gün Sirer,et al.  Small-world datacenters , 2011, SoCC.

[27]  A. Greenberg,et al.  VL2: a scalable and flexible data center network , 2009, Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication.

[28]  Ramesh Govindan,et al.  Liquidity in credit networks: a little trust goes a long way , 2011, EC '11.

[29]  Albert G. Greenberg,et al.  VL2: a scalable and flexible data center network , 2009, SIGCOMM '09.

[30]  Amin Vahdat,et al.  A scalable, commodity data center network architecture , 2008, SIGCOMM '08.

[31]  Amin Shokrollahi,et al.  Raptor codes , 2011, IEEE Transactions on Information Theory.

[32]  Jon Crowcroft,et al.  A survey and comparison of peer-to-peer overlay network schemes , 2005, IEEE Communications Surveys & Tutorials.

[33]  John F. Wilson,et al.  Informal Funds Transfer Systems : An Analysis of the Informal Hawala System , 2003 .

[34]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[35]  David Mazières,et al.  Kademlia: A Peer-to-Peer Information System Based on the XOR Metric , 2002, IPTPS.

[36]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[37]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[38]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[39]  Mark Handley,et al.  A scalable content-addressable network , 2001, SIGCOMM '01.

[40]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[41]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[42]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.