Analytical solution of the cylindrical torsion problem for the relaxed micromorphic continuum and other generalized continua (including full derivations)

We solve the St. Venant torsion problem for an infinite cylindrical rod whose behaviour is described by a family of isotropic generalized continua, including the relaxed micromorphic and classical micromorphic model. The results can be used to determine the material parameters of these models. Special attention is given to the possible nonphysical stiffness singularity for a vanishing rod diameter, because slender specimens are, in general, described as stiffer.

[1]  M. Shaat A reduced micromorphic model for multiscale materials and its applications in wave propagation , 2017, Composite Structures.

[2]  Vincent Lebastard,et al.  A Geometric Variable-Strain Approach for Static Modeling of Soft Manipulators With Tendon and Fluidic Actuation , 2020, IEEE Robotics and Automation Letters.

[3]  Ted Belytschko,et al.  Continuum Mechanics Modeling and Simulation of Carbon Nanotubes , 2005 .

[4]  Patrizio Neff,et al.  On material constants for micromorphic continua , 2004 .

[5]  R. Lakes,et al.  Bending of a Cosserat Elastic Bar of Square Cross Section: Theory and Experiment , 2015 .

[6]  Luca Placidi,et al.  A unifying perspective: the relaxed linear micromorphic continuum , 2013, Continuum Mechanics and Thermodynamics.

[7]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[8]  P. Neff,et al.  A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions , 2015, 1504.00868.

[9]  Gary F. Dargush,et al.  Couple stress theory for solids , 2011 .

[10]  Geralf Hütter,et al.  Micromorphic homogenization of a porous medium: elastic behavior and quasi-brittle damage , 2015 .

[11]  G. Dargush,et al.  Pure plate bending in couple stress theories , 2016, 1606.02954.

[12]  P. Neff,et al.  Poincare meets Korn via Maxwell: Extending Korn's First Inequality to Incompatible Tensor Fields , 2012, 1203.2744.

[13]  P. Neff,et al.  Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua , 2021, Continuum Mechanics and Thermodynamics.

[14]  G. Starke,et al.  Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions , 2013, 1307.1434.

[15]  R. Lakes,et al.  Cosserat elastic lattices , 2019, Meccanica.

[16]  R. Lakes,et al.  Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam , 1994, Journal of Materials Science.

[17]  P. Neff,et al.  On some fundamental misunderstandings in the indeterminate couple stress model. A comment on recent papers of A.R. Hadjesfandiari and G.F. Dargush , 2015, 1504.03105.

[18]  P. Neff,et al.  A numerical study for linear isotropic Cosserat elasticity with conformally invariant curvature , 2009 .

[19]  Y. Solyaev,et al.  Bending problems in the theory of elastic materials with voids and surface effects , 2018 .

[20]  Roderic S. Lakes,et al.  EXPERIMENTAL METHODS FOR STUDY OF COSSERAT ELASTIC SOLIDS AND OTHER GENERALIZED ELASTIC CONTINUA , 1995 .

[21]  I. Ghiba Semi-inverse solution for Saint-Venant's problem in the theory of porous elastic materials , 2008 .

[22]  W. E. Jahsman,et al.  A Quest for Micropolar Elastic Constants , 1975 .

[23]  P. Trovalusci,et al.  Torsional Characteristics of Carbon Nanotubes: Micropolar Elasticity Models and Molecular Dynamics Simulation , 2021, Nanomaterials.

[24]  P. Neff,et al.  Nečas–Lions lemma revisited: An Lp‐version of the generalized Korn inequality for incompatible tensor fields , 2019, Mathematical Methods in the Applied Sciences.

[25]  P. Onck,et al.  Size effects in two-dimensional Voronoi foams: A comparison between generalized continua and discrete models , 2008 .

[26]  S. Forest The micromorphic approach to gradient plasticity and damage , 2019 .

[27]  I. Ghiba,et al.  On the thermal stresses in anisotropic porous cylinders , 2013 .

[28]  Torsion of micropolar elastic beams , 1971 .

[29]  S. Vidoli,et al.  Generalized Hooke's law for isotropic second gradient materials , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[31]  P. Neff,et al.  Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy , 2016, 1603.06153.

[32]  Patrizio Neff,et al.  Effective Description of Anisotropic Wave Dispersion in Mechanical Band-Gap Metamaterials via the Relaxed Micromorphic Model , 2017, Journal of Elasticity.

[33]  Patrizio Neff,et al.  Subgrid interaction and micro-randomness – Novel invariance requirements in infinitesimal gradient elasticity , 2009 .

[34]  G. Dargush,et al.  Comparison of theoretical elastic couple stress predictions with physical experiments for pure torsion , 2016, 1605.02556.

[35]  Patrizio Neff,et al.  Existence of minimizers for a finite-strain micromorphic elastic solid , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[36]  Alberto Corigliano,et al.  On-Chip Electrostatically Actuated Bending Tests for the Mechanical Characterization of Polysilicon at the Micro Scale , 2005 .

[37]  G. Milton Elastic freedom in cellular solids and composite materials , 2005 .

[38]  A. Scalia Extension, Bending and Torsion of Anisotropic Microstretch Elastic Cylinders , 2000 .

[39]  Patrizio Neff,et al.  Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics , 2016, 1601.03667.

[40]  Stephen C. Cowin,et al.  Linear elastic materials with voids , 1983 .

[41]  R. Lakes,et al.  Experimental study of micropolar and couple stress elasticity in compact bone in bending. , 1982, Journal of biomechanics.

[42]  A. I. Lurie,et al.  Saint-Venant’s problem , 2005 .

[43]  R. Lakes Size effects and micromechanics of a porous solid , 1983 .

[44]  J. Altenbach,et al.  On generalized Cosserat-type theories of plates and shells: a short review and bibliography , 2010 .

[45]  Patrizio Neff,et al.  Microstructure-related Stoneley waves and their effect on the scattering properties of a 2D Cauchy/relaxed-micromorphic interface , 2019, Wave Motion.

[46]  Dorin Ieşan,et al.  Classical and Generalized Models of Elastic Rods , 2008 .

[47]  Manuel Collet,et al.  Relaxed micromorphic modeling of the interface between a homogeneous solid and a band-gap metamaterial: New perspectives towards metastructural design , 2017, 1708.02258.

[48]  Paul Steinmann,et al.  Mechanics of extended continua: modeling and simulation of elastic microstretch materials , 2007 .

[49]  Samuel Forest,et al.  Nonlinear microstrain theories , 2006 .

[50]  P. Neff,et al.  Linear Cosserat Elasticity, Conformal Curvature and Bounded Stiffness , 2010 .

[51]  Patrizio Neff,et al.  The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless , 2015, 1512.02053.

[52]  Patrizio Neff,et al.  Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy , 2021, Calculus of Variations and Partial Differential Equations.

[53]  R. Lakes,et al.  Strong Cosserat Elasticity in a Transversely Isotropic Polymer Lattice. , 2018, Physical review letters.

[54]  J. Brnić,et al.  Estimation of material properties of nanocomposite structures , 2013 .

[55]  Patrizio Neff,et al.  Lp-trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions , 2020, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[56]  M. Lazar,et al.  The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations , 2014, 1403.3442.

[57]  Luca Placidi,et al.  The relaxed linear micromorphic continuum: Existence, uniqueness and continuous dependence in dynamics , 2013, 1308.3762.

[58]  W. T. Koiter Couple-stresses in the theory of elasticity , 1963 .

[59]  I. Ghiba On the deformation of transversely isotropic porous elastic circular cylinder , 2009 .

[60]  P. Neff,et al.  Frequency- and angle-dependent scattering of a finite-sized meta-structure via the relaxed micromorphic model , 2020 .

[61]  Raffaele Barretta,et al.  Micromorphic continua: non-redundant formulations , 2016 .

[62]  R. Lakes,et al.  Torsion of a micropolar elastic prism of square cross-section , 1987 .

[63]  P. Neff,et al.  Mean field modeling of isotropic random Cauchy elasticity versus microstretch elasticity , 2009 .

[64]  P. Neff,et al.  The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy‐stress tensor is symmetric , 2006 .

[65]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[66]  P. Neff,et al.  A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model , 2015, 1505.00995.

[67]  John T. Katsikadelis,et al.  A new microstructure-dependent Saint–Venant torsion model based on a modified couple stress theory , 2011 .

[68]  Glenn R. Heppler,et al.  Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations , 2017 .

[69]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[70]  Patrizio Neff,et al.  Identification of Scale-Independent Material Parameters in the Relaxed Micromorphic Model Through Model-Adapted First Order Homogenization , 2019, Journal of Elasticity.

[71]  Geralf Hütter Application of a microstrain continuum to size effects in bending and torsion of foams , 2016 .

[72]  P. Neff,et al.  Correct traction boundary conditions in the indeterminate couple stress model , 2015, 1504.00448.

[73]  Shenjie Zhou,et al.  An application of a size-dependent model on microplate with elastic medium based on strain gradient elasticity theory , 2017 .

[74]  H. Altenbach,et al.  On the linear theory of micropolar plates , 2009 .

[75]  P. Neff,et al.  Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature , 2010 .

[76]  P. Tong,et al.  Size Effects of Hair-Sized Structures – Torsion , 2004 .

[77]  D. Ieşan,et al.  Saint-venants problem for microstretch elastic solids , 1994 .

[78]  P. Neff,et al.  Analytical solutions of the simple shear problem for micromorphic models and other generalized continua , 2021, Archive of Applied Mechanics.

[79]  R. V. Mises,et al.  On Saint Venant's principle , 1945 .

[80]  Samuel Forest Micromorphic Approach to Materials with Internal Length , 2020, Encyclopedia of Continuum Mechanics.

[81]  D. Nash,et al.  The influence of void size on the micropolar constitutive properties of model heterogeneous materials , 2013 .

[82]  S. Cicco,et al.  Torsion and flexure of microstretch elastic circular cylinders , 1997 .

[83]  Patrizio Neff,et al.  Existence results for non‐homogeneous boundary conditions in the relaxed micromorphic model , 2019, Mathematical Methods in the Applied Sciences.

[84]  P. Neff,et al.  A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy , 2009 .

[85]  P. Neff,et al.  Exploring Metamaterials’ Structures Through the Relaxed Micromorphic Model: Switching an Acoustic Screen Into an Acoustic Absorber , 2020, Frontiers in Materials.

[86]  A. Taliercio Torsion of micropolar hollow circular cylinders , 2010 .

[87]  Joachim Schöberl,et al.  A hybrid $$ H ^1\times H (\mathrm {curl})$$ finite element formulation for a relaxed micromorphic continuum model of antiplane shear , 2021 .

[88]  Patrizio Neff,et al.  A note on local higher regularity in the dynamic linear relaxed micromorphic model , 2020, Mathematical Methods in the Applied Sciences.