Bottom-Up Copper Filling of Large Scale Through Silicon Vias for MEMS Technology

An electrodeposition process for void-free bottom-up filling of sub-millimeter scale through silicon vias (TSVs) with Cu is detailed. The 600 μm deep and nominally 125 μm diameter metallized vias were filled with Cu in less than 7 hours under potentiostatic control. The electrolyte is comprised of 1.25 mol/L CuSO4 −0.25 mol/L CH3SO3H with polyether and halide additions that selectively suppress metal deposition on the free surface and side walls. A brief qualitative discussion of the procedures used to identify and optimize the bottom-up void-free feature filling is presented.

[1]  T. Moffat,et al.  Superconformal Nickel Deposition in Through Silicon Vias: Experiment and Prediction , 2020, Journal of the Electrochemical Society.

[2]  J. Dominguez,et al.  Galvanostatic Plating with a Single Additive Electrolyte for Bottom-Up Filling of Copper in Mesoscale TSVs , 2018, Journal of The Electrochemical Society.

[3]  T. Moffat,et al.  SEIRAS Study of Chloride-Mediated Polyether Adsorption on Cu. , 2018, The journal of physical chemistry. C, Nanomaterials and interfaces.

[4]  T. Moffat,et al.  Superconformal Copper Deposition in Through Silicon Vias by Suppression-Breakdown. , 2018, Journal of the Electrochemical Society.

[5]  T. Moffat,et al.  Superconformal Bottom-Up Nickel Deposition in High Aspect Ratio Through Silicon Vias. , 2016, ECS transactions.

[6]  R. S. Bonilla,et al.  A technique for field effect surface passivation for silicon solar cells , 2014 .

[7]  Thomas P. Moffat,et al.  Spatial-Temporal Modeling of Extreme Bottom-up Filling of Through-Silicon-Vias , 2013 .

[8]  S. Lee,et al.  TSV plating using copper methanesulfonate electrolyte with single component suppressor , 2012, 2012 4th Electronic System-Integration Technology Conference.

[9]  T. Moffat,et al.  Modeling Extreme Bottom-Up Filling of Through Silicon Vias , 2012 .

[10]  T. Moffat,et al.  Extreme Bottom-Up Superfilling of Through-Silicon-Vias by Damascene Processing: Suppressor Disruption, Positive Feedback and Turing Patterns , 2012 .

[11]  M. Kim,et al.  MSA as a Supporting Electrolyte in Copper Electroplating for Filling of Damascene Trenches and Through Silicon Vias , 2011 .

[12]  Thomas P. Moffat,et al.  Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling , 2006 .

[13]  Daniel Wheeler,et al.  Superconformal film growth: Mechanism and quantification , 2005, IBM J. Res. Dev..

[14]  K. Krischer Spontaneous formation of spatiotemporal patterns at the electrode ∣ electrolyte interface , 2001 .

[15]  K. Krischer,et al.  Pattern Formation in Globally Coupled Electrochemical Systems with an S-Shaped Current-Potential Curve , 2000 .

[16]  Min Wu,et al.  Environmental benefits of methanesulfonic acid. Comparative properties and advantages , 1999 .

[17]  Panayotis C. Andricacos,et al.  Damascene copper electroplating for chip interconnections , 1998, IBM J. Res. Dev..

[18]  Lubomyr T. Romankiw,et al.  A path: from electroplating through lithographic masks in electronics to LIGA in MEMS , 1997 .

[19]  G. Greeuw,et al.  THE MOBILITY OF NA+, LI+, AND K+ IONS IN THERMALLY GROWN SIO2-FILMS , 1984 .

[20]  G. T. Rogers,et al.  Polyethylene glycol in copper electrodeposition onto a rotating disk electrode , 1978 .

[21]  J. Stagg Drift mobilities of Na+ and K+ ions in SiO2 films , 1977 .