Hyperspectral Imaging Detection

Traditional optical sensing techniques, such as imaging and spectroscopy introduced in Chaps. 2 and 3, have limitations to acquire adequate spatial and spectral information for nondestructive evaluation of food and agricultural products. Generally, conventional imaging cannot acquire spectral information and spectroscopy measurement cannot cover large sample areas. In recent years, hyperspectral imaging has emerged as a powerful process analytical tool for nondestructive food analysis. It is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Therefore, hyperspectral imaging has the capability to rapidly and noninvasively monitor both physical and morphological characteristics and intrinsic chemical and molecular information of a food product for the purpose of quality and safety analyses and assessments. Some fundamental knowledge about hyperspectral imaging is introduced at first in this chapter, which includes the relationship between spectroscopy, imaging and chemical imaging, instruments for hyperspectral imaging, and image acquisition and processing. Two commonly used chemometric methods for obtaining useful features from hyperspectral images, principal component analysis (PCA) and independent component analysis (ICA), are discussed for dimension reduction and band selection. The reader is provided with a detailed overview of how to use chemometrics in hyperspectral data, along with a critical discussion on their respective advantages and potential pitfalls. The examples that we use for this purpose are the detection of chlorophyll in cucumber leaves, and the mapping of the total flavonoid distributions in fresh ginkgo leaves.

[1]  Shintaroh Ohashi,et al.  Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging , 2011 .

[2]  Shigeki Nakauchi,et al.  Near Infrared Spectroscopy and Hyperspectral Imaging for Prediction and Visualisation of Fat and Fatty Acid Content in Intact Raw Beef Cuts , 2010 .

[3]  G. Downey,et al.  Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (Agaricus bisporus) , 2008 .

[4]  Di Wu,et al.  Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review — Part II: Applications , 2013 .

[5]  Na Wang,et al.  Therapeutic effect of Ginkgo biloba polysaccharide in rats with focal cerebral ischemia/reperfusion (I/R) injury. , 2013, Carbohydrate polymers.

[6]  Renfu Lu,et al.  Analysis of hyperspectral scattering images using locally linear embedding algorithm for apple mealiness classification , 2012 .

[7]  Min Zhang,et al.  Detection of insect-damaged vegetable soybeans using hyperspectral transmittance image , 2013 .

[8]  Alexander F. H. Goetz,et al.  Three decades of hyperspectral remote sensing of the Earth: a personal view. , 2009 .

[9]  Yuri A. Gritz,et al.  Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.

[10]  Zou Xiaobo,et al.  Independent component analysis in information extraction from visible/near-infrared hyperspectral imaging data of cucumber leaves , 2010 .

[11]  Harold R. Garner,et al.  IMAGING | Hyperspectral Imaging , 2005 .

[12]  Margarita Ruiz-Altisent,et al.  Multispectral vision for monitoring peach ripeness. , 2011, Journal of food science.

[13]  Samir Samman,et al.  Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources , 1996 .

[14]  M. Biavatti,et al.  LC and UV determination of flavonoids from Passiflora alata medicinal extracts and leaves. , 2005, Journal of pharmaceutical and biomedical analysis.

[15]  Douglas Fernandes Barbin,et al.  Grape seed characterization by NIR hyperspectral imaging , 2013 .

[16]  Federico Pallottino,et al.  Application of non-invasive techniques to differentiate sea bass (Dicentrarchus labrax, L. 1758) quality cultured under different conditions , 2011, Aquaculture International.

[17]  Renfu Lu,et al.  Detection of bruises on apples using near-infrared hyperspectral imaging , 2003 .

[18]  Jiewen Zhao,et al.  Automated tea quality classification by hyperspectral imaging. , 2009, Applied optics.

[19]  Gamal ElMasry,et al.  Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression , 2012 .

[20]  P. Baranowski,et al.  Detection of early bruises in apples using hyperspectral data and thermal imaging , 2012 .

[21]  S. Sommer,et al.  The potential of remote sensing for monitoring rural land use changes and their effects on soil conditions , 1998 .

[22]  E. Tollner,et al.  Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderiacepacia)-infected onions , 2012 .

[23]  Karsten Heia,et al.  Classification of fresh Atlantic salmon (Salmo salar L.) fillets stored under different atmospheres by hyperspectral imaging , 2012 .

[24]  Pablo J. Zarco-Tejada,et al.  Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops , 2004 .

[25]  B. Overholt,et al.  An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging. , 2006, Medical engineering & physics.

[26]  Xuhui Zhao,et al.  Multispectral Detection of Citrus Canker Using Hyperspectral Band Selection , 2011 .

[27]  P E Stanga,et al.  High-resolution hyperspectral imaging of the retina with a modified fundus camera. , 2010, Journal francais d'ophtalmologie.

[28]  Di Wu,et al.  Rapid and non-destructive determination of drip loss and pH distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared (Vis-NIR) hyperspectral imaging. , 2014, Food chemistry.

[29]  Bart Nicolai,et al.  Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging , 2006 .

[30]  Gamal ElMasry,et al.  High-speed assessment of fat and water content distribution in fish fillets using online imaging spectroscopy. , 2008, Journal of agricultural and food chemistry.

[31]  Da-Wen Sun,et al.  NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen–thawed porcine longissimus dorsi muscles , 2013 .

[32]  M. Benaissa,et al.  Determination of glucose concentration from NIR spectra using independent component regression , 2011 .

[33]  Yves Roggo,et al.  Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms , 2005 .

[34]  G. Shi,et al.  A water-soluble cationic oligopyrene derivative : Spectroscopic studies and sensing applications , 2009 .

[35]  Linzhang Yang,et al.  Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance , 2009 .

[36]  G Bonifazi,et al.  Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. , 2010, International journal of food microbiology.

[37]  Ning Wang,et al.  Studies on banana fruit quality and maturity stages using hyperspectral imaging , 2012 .

[38]  R. Lu,et al.  An lctf-based multispectral imaging system for estimation of apple fruit firmness: Part I. Acquisition and characterization of scattering images , 2006 .

[39]  Paul J. Williams,et al.  Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. , 2009, Analytica chimica acta.

[40]  Koki Kyo,et al.  Wavelength selection in vis/NIR spectra for detection of bruises on apples by ROC analysis , 2012 .

[41]  Hongbin Pu,et al.  Hierarchical variable selection for predicting chemical constituents in lamb meats using hyperspectral imaging , 2014 .

[42]  B. Yoder,et al.  Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales , 1995 .

[43]  Zou Xiaobo,et al.  Variables selection methods in near-infrared spectroscopy. , 2010, Analytica chimica acta.

[44]  Renfu Lu,et al.  Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content , 2011 .

[45]  Paul Geladi,et al.  Hyperspectral imaging: calibration problems and solutions , 2004 .

[46]  Jianwei Qin,et al.  Raman Chemical Imaging System for Food Safety and Quality Inspection , 2010 .

[47]  Fenghua Jin,et al.  Walnut shell and meat differentiation using fluorescence hyperspectral imagery with ICA-kNN optimal wavelength selection , 2007 .

[48]  Wei Wang,et al.  [Study of spatially resolved hyperspectral scattering images for assessing beef quality characteristics]. , 2010, Guang pu xue yu guang pu fen xi = Guang pu.

[49]  W. R. Windham,et al.  Hyperspectral Imaging for Detecting Fecal and Ingesta Contaminants on Poultry Carcasses , 2002 .

[50]  Y. R. Chen,et al.  USE OF HYPER– AND MULTI–SPECTRAL IMAGING FOR DETECTION OF CHICKEN SKIN TUMORS , 2000 .

[51]  Ernestina Casiraghi,et al.  Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy , 2008 .

[52]  David Casasent,et al.  Fast feature selection algorithm for poultry skin tumor detection in hyperspectral data , 2009 .

[53]  M. Shahin,et al.  Original paper: Detection of Fusarium damaged kernels in Canada Western Red Spring wheat using visible/near-infrared hyperspectral imaging and principal component analysis , 2011 .

[54]  Yankun Peng,et al.  Prediction of beef quality attributes using VIS/NIR hyperspectral scattering imaging technique , 2012 .

[55]  Kelly E Heim,et al.  Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. , 2002, The Journal of nutritional biochemistry.

[56]  Jeff Fortuna,et al.  Improved support vector classification using PCA and ICA feature space modification , 2004, Pattern Recognit..

[57]  Renfu Lu,et al.  Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging—Part II. Performance of a prototype , 2008 .

[58]  Philip J Marriott,et al.  Comprehensive two-dimensional gas chromatography, retention indices and time-of-flight mass spectra of flavonoids and chalcones. , 2010, Journal of chromatography. A.

[59]  Martha C. Anderson,et al.  Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale , 2009 .

[60]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[61]  Junhong Liu,et al.  Single-Kernel Maize Analysis by Near-Infrared Hyperspectral Imaging , 2004 .

[62]  Paul Geladi,et al.  NIR spectrometry for counterfeit drug detection - A feasibility study , 2005 .

[63]  Gamal Elmasry,et al.  Near-infrared hyperspectral imaging for grading and classification of pork. , 2012, Meat science.

[64]  M. Koizumi,et al.  Light Gradients and the Transverse Distribution of Chlorophyll Fluorescence in Mangrove and Camellia Leaves , 1998 .

[65]  D. M. Moss,et al.  Red edge spectral measurements from sugar maple leaves , 1993 .

[66]  José Manuel Amigo,et al.  Nir-chemical imaging study of acetylsalicylic acid in commercial tablets. , 2009, Talanta.

[67]  Gamal ElMasry,et al.  Quality classification of cooked, sliced turkey hams using NIR hyperspectral imaging system , 2011 .

[68]  R. Baranski,et al.  Potential of NIR‐FT‐Raman spectroscopy in natural carotenoid analysis , 2005, Biopolymers.

[69]  Di Wu,et al.  Non-destructive and rapid analysis of moisture distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared hyperspectral imaging , 2013 .

[70]  Moon S. Kim,et al.  Development of simple algorithms for the detection of fecal contaminants on apples from visible/near infrared hyperspectral reflectance imaging , 2007 .

[71]  Yankun Peng,et al.  Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles , 2011 .

[72]  Da-Wen Sun,et al.  Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat , 2012 .

[73]  Antonio J. Serrano,et al.  Comparison of ROC Feature Selection Method for the Detection of Decay in Citrus Fruit Using Hyperspectral Images , 2013, Food and Bioprocess Technology.

[74]  Gamal ElMasry,et al.  Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. , 2012, Analytica chimica acta.

[75]  Chun-Chieh Yang,et al.  The development of the line-scan image recognition algorithm for the detection of frass on mature tomatoes , 2012, Defense + Commercial Sensing.

[76]  Xuhui Zhao,et al.  Development of a two-band spectral imaging system for real-time citrus canker detection , 2012 .

[77]  Atta-ur- Rahman,et al.  Studies in natural products chemistry , 1988 .

[78]  F. Sabins,et al.  Remote sensing for mineral exploration , 1999 .

[79]  Helene Schulerud,et al.  On-Line Fat Content Classification of Inhomogeneous Pork Trimmings Using Multispectral near Infrared Interactance Imaging , 2010 .

[80]  Moon S. Kim,et al.  Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves , 1992 .

[81]  Yasuo Matsuyama,et al.  Database retrieval for similar images using ICA and PCA bases , 2005, Eng. Appl. Artif. Intell..

[82]  Moon S. Kim,et al.  Development of a Simple Algorithm for the Detection of Chilling Injury in Cucumbers from Visible/Near-Infrared Hyperspectral Imaging , 2005, Applied spectroscopy.

[83]  V. Preedy Diabetes: Oxidative Stress and Dietary Antioxidants , 2013 .

[84]  B. Datt,et al.  Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves , 1999 .

[85]  J. Mantanus,et al.  Acetaminophen determination in low-dose pharmaceutical syrup by NIR spectroscopy. , 2010, Journal of pharmaceutical and biomedical analysis.

[86]  Shahin Rafiee,et al.  Non-destructive Measurement of Moisture and Soluble Solids Content of Mazafati Date Fruit by NIR Spectroscopy , 2010 .

[87]  Min Huang,et al.  Apple mealiness detection using hyperspectral scattering technique , 2010 .

[88]  Di Wu,et al.  Application of long-wave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet , 2012 .

[89]  Gordon M. Heisler,et al.  Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season , 2003 .

[90]  Kurt C. Lawrence,et al.  Performance of hyperspectral imaging system for poultry surface fecal contaminant detection. , 2006 .

[91]  Huaqiang Cao,et al.  ZnO@graphene composite with enhanced performance for the removal of dye from water , 2011 .

[92]  S. Prasher,et al.  Pork quality and marbling level assessment using a hyperspectral imaging system , 2007 .

[93]  Gamal ElMasry,et al.  Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging , 2011 .

[94]  Frank Vogt,et al.  Fast principal component analysis of large data sets , 2001 .

[95]  Samuel Verdú,et al.  Detection of expired vacuum-packed smoked salmon based on PLS-DA method using hyperspectral images , 2013 .

[96]  R. Lu,et al.  Hyperspectral Scattering for assessing Peach Fruit Firmness , 2006 .

[97]  D. Bhatnagar,et al.  Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores , 2010, Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.

[98]  Renfu Lu,et al.  Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging , 2013 .

[99]  D. P. Ariana,et al.  Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. , 2010 .

[100]  Colm P. O'Donnell,et al.  Visible-Near Infrared Hyperspectral Imaging for the Identification and Discrimination of Brown Blotch Disease on Mushroom (Agaricus Bisporus) Caps , 2010 .

[101]  Stina Frosch,et al.  Multispectral Imaging for Determination of Astaxanthin Concentration in Salmonids , 2011, PloS one.

[102]  G. A. Blackburn,et al.  Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves , 1998 .

[103]  David A. Landgrebe,et al.  MultiSpec: a tool for multispectral--hyperspectral image data analysis , 2002 .

[104]  G. Agati,et al.  New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. , 2001, Journal of photochemistry and photobiology. B, Biology.

[105]  Gamal ElMasry,et al.  Non-destructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging. , 2013, Food chemistry.

[106]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[107]  Ting Zhang,et al.  HPLC Analysis of Flavonoids from the Aerial Parts of Bupleurum Species: HPLC Analysis of Flavonoids from the Aerial Parts of Bupleurum Species , 2010 .

[108]  Jiewen Zhao,et al.  Detection of Bruise on Pear by Hyperspectral Imaging Sensor with Different Classification Algorithms , 2010 .

[109]  Karsten Heia,et al.  Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy , 2011 .

[110]  Ashok Samal,et al.  Visible/near-infrared hyperspectral imaging for beef tenderness prediction , 2008 .

[111]  G. P Krivoshiev,et al.  A Possibility for Elimination of the Interference from the Peel in Nondestructive Determination of the Internal Quality of Fruit and Vegetables by VIS/NIR Spectroscopy , 2000 .

[112]  José Antonio Cayuela,et al.  NIR prediction of fruit moisture, free acidity and oil content in intact olives. , 2009 .

[113]  R. Kokaly,et al.  Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies , 2009 .

[114]  Colm P. O'Donnell,et al.  Hyperspectral imaging – an emerging process analytical tool for food quality and safety control , 2007 .

[115]  Qibing Zhu,et al.  Model fusion for prediction of apple firmness using hyperspectral scattering image , 2012 .

[116]  K. Sasaki,et al.  Chemistry and Biological Activities of Ginkgo Biloba , 2003 .

[117]  D. Roberts,et al.  Daytime fire detection using airborne hyperspectral data , 2009 .

[118]  D. Jayas,et al.  Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples. , 2009 .

[119]  Moon S. Kim,et al.  Detection of Fecal Contamination on Cantaloupes Using Hyperspectral Fluorescence Imagery , 2005 .

[120]  Shunlin Liang,et al.  Earth system science related imaging spectroscopy — an assessment , 2009 .

[121]  Fei Liu,et al.  Application of Visible and Near Infrared Hyperspectral Imaging to Differentiate Between Fresh and Frozen–Thawed Fish Fillets , 2013, Food and Bioprocess Technology.

[122]  B. Datt Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total Carotenoid Content in Eucalyptus Leaves , 1998 .

[123]  Colm P. O'Donnell,et al.  Comparison of hyperspectral imaging with conventional RGB imaging for quality evaluation of Agaricus bisporus mushrooms , 2011 .

[124]  Renfu Lu,et al.  Optimization of the hyperspectral imaging-based spatially-resolved system for measuring the optical properties of biological materials. , 2010, Optics express.

[125]  R. Ford Denison,et al.  Field estimates of green leaf area index using laser-induced chlorophyll fluorescence , 1997 .

[126]  V. Chelladurai,et al.  Detection of infestation by Callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging , 2013 .

[127]  H. Gausman,et al.  Leaf Reflectance vs. Leaf Chlorophyll and Carotenoid Concentrations for Eight Crops1 , 1977 .

[128]  Moon S. Kim,et al.  Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery , 2013 .

[129]  Olivier Dangles,et al.  Inhibition of the peroxidation of linoleic acid by the flavonoid quercetin within their complex with human serum albumin. , 2007, Free radical biology & medicine.

[130]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[131]  S. Elvira,et al.  A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants , 1992 .

[132]  James S. Schepers,et al.  Measuring Chlorophyll Content in Corn Leaves with Differing Nitrogen Levels and Relative Water Content , 2019 .

[133]  G. Camps-Valls,et al.  Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins , 2008 .

[134]  Alain Richard,et al.  Raman hyperspectral imaging applied to chemical co-localization in diluted samples of perylene-doped nanotubes , 2002 .

[135]  Jean-Michel Roger,et al.  Comparison of multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening , 2011 .

[136]  Qiang Wang,et al.  HPLC Analysis of Flavonoids from the Aerial Parts of Bupleurum Species , 2010 .

[137]  Daniel E. Guyer,et al.  Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers , 2006, Computers and Electronics in Agriculture.

[138]  A. Wellburn,et al.  Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents , 1983 .

[139]  Turid Rustad,et al.  Ice fraction assessment by near-infrared spectroscopy enhancing automated superchilling process lines , 2010 .

[140]  J P Wold,et al.  On-line determination and control of fat content in batches of beef trimmings by NIR imaging spectroscopy. , 2011, Meat science.

[141]  David G. Castner,et al.  Multivariate analysis strategies for processing ToF-SIMS images of biomaterials. , 2007, Biomaterials.

[142]  Kyong Soo Park,et al.  The Use of Ginkgo biloba Extract in Cardiovascular Protection in Patients with Diabetes , 2014 .

[143]  Ernestina Casiraghi,et al.  NIR and MIR spectroscopy as rapid methods to monitor red wine fermentation , 2010 .

[144]  Noel D.G. White,et al.  Classification of Fungal Infected Wheat Kernels Using Near-Infrared Reflectance Hyperspectral Imaging and Support Vector Machine , 2007 .

[145]  Jon Atli Benediktsson,et al.  On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation , 2008, Neurocomputing.

[146]  Jianwei Qin,et al.  DETECTION OF PITS IN TART CHERRIES BY HYPERSPECTRAL TRANSMISSION IMAGING , 2005 .

[147]  Renfu Lu,et al.  Assessing Multiple Quality Attributes of Peaches Using Optical Absorption and Scattering Properties , 2012 .

[148]  R. Bro,et al.  Near-infrared chemical imaging (NIR-CI) on pharmaceutical solid dosage forms-comparing common calibration approaches. , 2008, Journal of pharmaceutical and biomedical analysis.

[149]  Moon S. Kim,et al.  Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements , 1994 .

[150]  J. Qin,et al.  Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence , 2009 .

[151]  Jianwei Qin,et al.  Measurement of the Absorption and Scattering Properties of Turbid Liquid Foods Using Hyperspectral Imaging , 2007, Applied spectroscopy.

[152]  Adolfas Toleikis,et al.  Effect of Ginkgo biloba extract on the rat heart mitochondrial function. , 2007, Journal of ethnopharmacology.

[153]  Qing-bo Li,et al.  [Chlorophyll content nondestructive measurement method based on Vis/NIR spectroscopy]. , 2009, Guang pu xue yu guang pu fen xi = Guang pu.

[154]  W. Cui,et al.  Ginkgo biloba extract improves coronary blood flow in healthy elderly adults: role of endothelium-dependent vasodilation. , 2008, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[155]  Antonietta Baiano,et al.  Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes , 2012 .

[156]  Gamal ElMasry,et al.  Application of NIR hyperspectral imaging for discrimination of lamb muscles , 2011 .

[157]  José C Menezes,et al.  Near-infrared reflectance spectroscopy as a process analytical technology tool in Ginkgo biloba extract qualification. , 2008, Journal of pharmaceutical and biomedical analysis.

[158]  Paul Allen,et al.  Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system , 2013 .

[159]  M. Ruiz-Altisent,et al.  Multispectral images of peach related to firmness and maturity at harvest , 2009 .

[160]  Giorgia Foca,et al.  Classification of pig fat samples from different subcutaneous layers by means of fast and non-destructive analytical techniques , 2013 .

[161]  P. Tu,et al.  A rapid method for simultaneous determination of 15 flavonoids in Epimedium using pressurized liquid extraction and ultra-performance liquid chromatography. , 2008, Journal of pharmaceutical and biomedical analysis.

[162]  Zou Xiaobo,et al.  Use of FT-NIR spectrometry in non-invasive measurements of soluble solid contents (SSC) of ‘Fuji’ apple based on different PLS models , 2007 .

[163]  R. Terreux,et al.  Flavonoids and tyrosine nitration: structure-activity relationship correlation with enthalpy of formation. , 2005, Toxicology in vitro : an international journal published in association with BIBRA.

[164]  E. Livingston,et al.  Intraoperative bile duct visualization using near-infrared hyperspectral video imaging. , 2008, American Journal of Surgery.

[165]  A. Hatanaka,et al.  Distribution of lipoxygenase and hydroperoxide lyase in the leaves of various plant species , 1983 .

[166]  Gamal ElMasry,et al.  Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. , 2013, Food chemistry.

[167]  E. Oja,et al.  Independent Component Analysis , 2013 .

[168]  Bart Nicolai,et al.  Prediction of optimal cooking time for boiled potatoes by hyperspectral imaging , 2011 .

[169]  Fausto W. Acerbi-Junior,et al.  Scaling dimensions in spectroscopy of soil and vegetation , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[170]  Roger Meder,et al.  Near Infrared Hyperspectral Imaging Applied to Mapping Chemical Composition in Wood Samples , 2010 .

[171]  M. Cho,et al.  A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method , 2006 .

[172]  Andrew Chi-Sing Leung,et al.  Data compression on the illumination adjustable images by PCA and ICA , 2004, Signal Process. Image Commun..

[173]  O. M. Palomino,et al.  High-performance liquid chromatography of flavonoids from Sideritis species , 1996 .

[174]  G. Carter Ratios of leaf reflectances in narrow wavebands as indicators of plant stress , 1994 .

[175]  Da-Wen Sun,et al.  An overview on principle, techniques and application of hyperspectral imaging with special reference to ham quality evaluation and control , 2014 .

[176]  Philip J. Barlow,et al.  Flavonoid recovery and stability from Ginkgo biloba subjected to a simulated digestion process , 2004 .

[177]  Gerrit Polder,et al.  Hyperspectral image analysis for measuring ripeness of tomatoes. , 2000 .

[178]  Gamal ElMasry,et al.  Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef , 2012 .

[179]  John R. Miller,et al.  Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model , 1990 .

[180]  Gamal ElMasry,et al.  Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. , 2013, Talanta.

[181]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[182]  Antoine Champagne,et al.  NIR determination of major constituents in tropical root and tuber crop flours. , 2009, Journal of agricultural and food chemistry.

[183]  Moon S. Kim,et al.  Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations , 2004 .

[184]  Adolfo Cobo,et al.  Quality control of industrial processes by combining a hyperspectral sensor and Fisher's linear discriminant analysis , 2008 .

[185]  Rudolf Richter Atmospheric correction of DAIS hyperspectral image data , 1996 .

[186]  Douglas Fernandes Barbin,et al.  Prediction of water and protein contents and quality classification of Spanish cooked ham using NIR hyperspectral imaging , 2013 .

[187]  Emmanuel P. Baltsavias Special section on Image Spectroscopy and Hyperspectral Imaging , 2002 .

[188]  Robyn A. Macsata,et al.  Hyperspectral imaging: An emerging technology as a potential novel adjunct in assessing peripheral perfusion deficits and success of lower extremity revascularizations , 2008 .

[189]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[190]  Gamal ElMasry,et al.  Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging. , 2012, Analytica chimica acta.

[191]  Kurt C. Lawrence,et al.  BONE FRAGMENT DETECTION IN CHICKEN BREAST FILLETS USING TRANSMITTANCE IMAGE ENHANCEMENT , 2007 .

[192]  M. Ngadi,et al.  Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry , 2007 .

[193]  C. Gendrin,et al.  Content uniformity of pharmaceutical solid dosage forms by near infrared hyperspectral imaging: A feasibility study. , 2007, Talanta.

[194]  Emanuele Salerno,et al.  Blind spectral unmixing by local maximization of non-Gaussianity , 2008, Signal Process..

[195]  Fred Godtliebsen,et al.  Ridge detection with application to automatic fish fillet inspection , 2009 .

[196]  John R. Miller,et al.  Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. , 2002, Journal of environmental quality.

[197]  Min Huang,et al.  Wavelength Selection of Hyperspectral Scattering Image Using New Semi-supervised Affinity Propagation for Prediction of Firmness and Soluble Solid Content in Apples , 2013, Food Analytical Methods.

[198]  Renfu Lu,et al.  Detection of fruit fly infestation in pickling cucumbers using a hyperspectral reflectance/transmittance imaging system , 2013 .

[199]  Bingren Xiang,et al.  Simultaneous Quantitation of Flavonol Aglycones in Ginkgo Biloba Leaf Extracts Applying Moving Window Partial Least Squares Regression Models , 2008 .

[200]  Di Wu,et al.  Novel non-invasive distribution measurement of texture profile analysis (TPA) in salmon fillet by using visible and near infrared hyperspectral imaging. , 2014, Food chemistry.

[201]  Ralf Jaumann,et al.  Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis: Applications to Galileo NIMS data , 2008 .

[202]  G. A. Blackburn,et al.  Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches , 1998 .

[203]  Colm P. O'Donnell,et al.  Wavelength Selection for Development of a near Infrared Imaging System for Early Detection of Bruise Damage in Mushrooms (Agaricus Bisporus) , 2012 .

[204]  H. Poilvé,et al.  Hyperspectral Imaging and Stress Mapping in Agriculture , 1998 .

[205]  H. Edwards,et al.  Raman spectra of carotenoids in natural products. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[206]  Jian Fu,et al.  Making a smarter color camera , 2008, Image Vis. Comput..

[207]  Nuria Aleixos,et al.  Selection of Optimal Wavelength Features for Decay Detection in Citrus Fruit Using the ROC Curve and Neural Networks , 2013, Food and Bioprocess Technology.

[208]  Stephen J. Symons,et al.  Using a Short Wavelength Infrared (SWIR) hyperspectral imaging system to predict alpha amylase activity in individual Canadian western wheat kernels , 2009 .

[209]  S. Kochubey,et al.  Changes in the first derivatives of leaf reflectance spectra of various plants induced by variations of chlorophyll content. , 2007, Journal of plant physiology.

[210]  Xin Li,et al.  An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene–TiO2 composite photoanodes , 2014 .

[211]  Moon S. Kim,et al.  A comparison of hyperspectral reflectance and fluorescence imaging techniques for detection of contaminants on spinach leaves , 2014 .

[212]  Yong He,et al.  Identification of crack features in fresh jujube using Vis/NIR hyperspectral imaging combined with image processing , 2014 .

[213]  B. A. Weinstock,et al.  Prediction of Oil and Oleic Acid Concentrations in Individual Corn (Zea Mays L.) Kernels Using Near-Infrared Reflectance Hyperspectral Imaging and Multivariate Analysis , 2006, Applied spectroscopy.

[214]  Quansheng Chen,et al.  [Measurement of chlorophyll content and distribution in tea plant's leaf using hyperspectral imaging technique]. , 2011, Guang pu xue yu guang pu fen xi = Guang pu.

[215]  James Barber,et al.  Red edge measurements for remotely sensing plant chlorophyll content , 1983 .

[216]  A. Goetz,et al.  Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean , 2009 .

[217]  Francesco Carlo Morabito,et al.  PCA-ICA for automatic identification of critical events in continuous coma-EEG monitoring , 2009, Biomed. Signal Process. Control..

[218]  C. François,et al.  Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements , 2004 .

[219]  Xiuqin Rao,et al.  Detection of common defects on oranges using hyperspectral reflectance imaging , 2011 .

[220]  Johanna T. Dwyer,et al.  Flavonoids: Dietary occurrence and biochemical activity , 1998 .

[221]  J. Peñuelas,et al.  The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. , 1994 .

[222]  Gamal ElMasry,et al.  Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging , 2013 .

[223]  Vincent Baeten,et al.  4.06 – Spectroscopic Imaging , 2009 .

[224]  Claus Buschmann,et al.  In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation , 1993 .

[225]  Qu Hai-bin Determination of Active Components in a Natural Herb with Near Infrared Spectroscopy Based on Artificial Neural Networks , 2005 .

[226]  L. A. Patil,et al.  Nanocrystalline Pt-doped TiO2 thin films prepared by spray pyrolysis for hydrogen gas detection , 2014, Bulletin of Materials Science.

[227]  Josse De Baerdemaeker,et al.  Bruise detection on ‘Jonagold’ apples using hyperspectral imaging , 2005 .

[228]  S. Vijay Kumar,et al.  Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites , 2012 .

[229]  Moon S. Kim,et al.  Hyperspectral reflectance and fluorescence line-scan imaging for online defect and fecal contamination inspection of apples , 2007 .

[230]  Yankun Peng,et al.  Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique. , 2012, Meat science.