Node Numbering for Stabilizing Preconditioners Based on Incomplete LU Decomposition

Matrix-reordering strategies that reduce the occurrence of instabilities often associated with preconditioners based on incomplete LU decomposition are presented. Several example matrices, extracted from turbulent-flow simulations, and from structural mechanics, are used to demonstrate the occurrence of instabilities and to investigate the underlying cause. The current work demonstrates that appropriate schemes for reordering unknowns can provide a very effective strategy for stabilizing the preconditioner, thereby enabling a Krylov-subspace method to solve linear systems that were heretofore unsolvable. Several new numbering strategies are presented, one of which provides a tunable parameter to control the bandwidth of the renumbered matrix. Using the discussed methodology greatly increases the robustness and reliability of the simulations.

[1]  Bret Stanford,et al.  Transonic Aeroelastic Modeling of the NACA 0012 Benchmark Wing , 2020, AIAA Journal.

[2]  Stephen L. Wood,et al.  Sparse Linear Algebra Toolkit for Computational Aerodynamics , 2020 .

[3]  Stephen L. Wood,et al.  Flutter Analysis with Stabilized Finite Elements based on the Linearized Frequency-domain Approach , 2020 .

[4]  William L. Kleb,et al.  Sketch-to-Solution: An Exploration of Viscous CFD with Automatic Grids , 2019, AIAA Aviation 2019 Forum.

[5]  Robert Haimes,et al.  Geometry Modeling for Unstructured Mesh Adaptation , 2019, AIAA Aviation 2019 Forum.

[6]  William Gropp,et al.  PETSc Users Manual: Revision 3.11 , 2019 .

[7]  Steve L. Karman,et al.  Stabilized Finite Elements in FUN3D , 2017 .

[8]  Anthony J. Sclafani,et al.  Development of the High Lift Common Research Model (HL-CRM): A Representative High Lift Configuration for Transonic Transports , 2016 .

[9]  Sanderson L. Gonzaga de Oliveira,et al.  A Systematic Review of Heuristics for Profile Reduction of Symmetric Matrices , 2015, ICCS.

[10]  Joaquim R. R. A. Martins,et al.  A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures , 2014 .

[11]  Joaquim R. R. A. Martins,et al.  Aerostructural optimization of the common research model configuration , 2014 .

[12]  Joaquim R. R. A. Martins,et al.  Parallel Solution Methods for Aerostructural Analysis and Design Optimization , 2010 .

[13]  Gu Feng,et al.  An Improvement of the Gibbs-Poole-Stockmeyer Algorithm , 2010 .

[14]  Dragan Urosevic,et al.  Variable neighbourhood search for bandwidth reduction , 2008, Eur. J. Oper. Res..

[15]  Jennifer A. Scott,et al.  Reducing the Total Bandwidth of a Sparse Unsymmetric Matrix , 2006, SIAM J. Matrix Anal. Appl..

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[18]  Fred W. Glover,et al.  Reducing the bandwidth of a sparse matrix with tabu search , 2001, Eur. J. Oper. Res..

[19]  George D. Poole,et al.  The Rook's pivoting strategy , 2000 .

[20]  John Reid,et al.  Ordering symmetric sparse matrices for small profile and wavefront , 1999 .

[21]  Michele Benzi,et al.  Orderings for Incomplete Factorization Preconditioning of Nonsymmetric Problems , 1999, SIAM J. Sci. Comput..

[22]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[23]  Michael P. Chernesky,et al.  On preconditioned Krylov subspace methods for discrete convection–diffusion problems , 1997 .

[24]  L. Dutto The effect of ordering on preconditioned GMRES algorithm, for solving the compressible Navier-Stokes equations , 1993 .

[25]  Wei-Pai Tang,et al.  Ordering Methods for Preconditioned Conjugate Gradient Methods Applied to Unstructured Grid Problems , 1992, SIAM J. Matrix Anal. Appl..

[26]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[27]  George D. Poole,et al.  Gaussian elimination: when is scaling beneficial? , 1992 .

[28]  G. Poole,et al.  A geometric analysis of Gaussian elimination. II , 1991 .

[29]  I. Duff,et al.  The effect of ordering on preconditioned conjugate gradients , 1989 .

[30]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[31]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[32]  William F. Smyth,et al.  Algorithms for the reduction of matrix bandwidth and profile , 1985 .

[33]  Y. Saad,et al.  Practical Use of Some Krylov Subspace Methods for Solving Indefinite and Nonsymmetric Linear Systems , 1984 .

[34]  M. Randolph,et al.  Automatic element reordering for finite element analysis with frontal solution schemes , 1983 .

[35]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[36]  Ahmed H. Sameh,et al.  Algorithms for roundoff error analysis —A relative error approach , 1980, Computing.

[37]  O. Axelsson Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , 1980 .

[38]  William G. Poole,et al.  An algorithm for reducing the bandwidth and profile of a sparse matrix , 1976 .

[39]  A. H. Sherman,et al.  Comparative Analysis of the Cuthill–McKee and the Reverse Cuthill–McKee Ordering Algorithms for Sparse Matrices , 1976 .

[40]  F. L. Bauer Computational Graphs and Rounding Error , 1974 .

[41]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[42]  Sanderson L. Gonzaga de Oliveira,et al.  Metaheuristic-based Heuristics for Symmetric-matrix Bandwidth Reduction: A Systematic Review , 2015, ICCS.

[43]  Forrester T. Johnson,et al.  Modi cations and Clari cations for the Implementation of the Spalart-Allmaras Turbulence Model , 2011 .

[44]  Xiao-Wei Shi,et al.  AN IMPROVED ALGORITHM FOR MATRIX BANDWIDTH AND PROFILE REDUCTION IN FINITE ELEMENT ANALYSIS , 2009 .

[45]  A. Pothen,et al.  Two improved algorithms for envelope and wavefront reduction , 1997 .

[46]  W. K. Anderson,et al.  An implicit upwind algorithm for computing turbulent flows on unstructured grids , 1994 .

[47]  Robert M. Bennett,et al.  NACA 0012 benchmark model experimental flutter results with unsteady pressure distributions , 1992 .

[48]  M. An accuracy and stability of numerical algorithms , 1991 .

[49]  D. P. Young,et al.  GMRES acceleration of computational fluid dynamics codes , 1985 .

[50]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[51]  G. Golub,et al.  Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .