A modified DNA genetic algorithm for parameter estimation of the 2-Chlorophenol oxidation in supercritical water

Abstract Based on the mechanism of biological DNA genetic information and evolution, a modified DNA genetic algorithm (MDNA-GA) is proposed to estimate the kinetic parameters of the 2-Chlorophenol oxidation in supercritical water. In this approach, DNA encoding method, choose crossover operator and frame-shift mutation operator inspired by the biological DNA are developed for improving the global searching ability. Besides, an adaptive mutation probability which can be adjusted automatically according to the diversity of population is also adopted. A local search method is used to explore the search space to accelerate the convergence towards global optimum. The performance of MDNA-GA in typical benchmark functions and kinetic parameter estimation is studied and compared with RNA-GA. The experimental results demonstrate that the proposed algorithm can overcome premature convergence and yield the global optimum with high efficiency.

[1]  Ning Wang,et al.  A DNA based genetic algorithm for parameter estimation in the hydrogenation reaction , 2009 .

[2]  V.M. Becerra,et al.  Genetic algorithms for optimal control of beer fermentation , 2001, Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206).

[3]  M. Pourkashanian,et al.  The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms , 2000 .

[4]  Christopher W. Wilson,et al.  Genetic algorithms for optimisation of chemical kinetics reaction mechanisms , 2004 .

[5]  Jili Tao,et al.  DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes , 2007, Comput. Chem. Eng..

[6]  Phillip E. Savage,et al.  Kinetics of phenol oxidation in supercritical water , 1992 .

[7]  J. Sánchez-Oneto,et al.  Kinetic model for oxygen concentration dependence in the supercritical water oxidation of an industrial wastewater , 2008 .

[8]  Ning Wang,et al.  A novel RNA genetic algorithm for parameter estimation of dynamic systems , 2010 .

[9]  Lionel Estel,et al.  A genetic algorithm with decimal coding for the estimation of kinetic and energetic parameters , 2000 .

[10]  T. K. Radhakrishnan,et al.  Real-coded genetic algorithm for system identification and controller tuning , 2009 .

[11]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[12]  Phillip E. Savage,et al.  2-Chlorophenol oxidation in supercritical water: Global kinetics and reaction products , 1993 .

[13]  L. J. Park,et al.  Application of genetic algorithms to parameter estimation of bioprocesses , 2006, Medical and Biological Engineering and Computing.

[14]  Yang Sanba ESTIMATING KINETICS PARAMETERS IN SYNTHESIS OF ETHYL tert-BUTYL ETHER BY USING GENETIC ALGORITHM , 2002 .

[15]  George W. Irwin,et al.  A hybrid linear/nonlinear training algorithm for feedforward neural networks , 1998, IEEE Trans. Neural Networks.

[16]  Jing-Yu Yang,et al.  An improved genetic algorithm based on a novel selection strategy for nonlinear programming problems , 2011, Comput. Chem. Eng..

[17]  V. S. Patwardhan,et al.  Effect of particle stratification on the performance of fluidized adsorption beds , 1986 .

[18]  R. Moros,et al.  A genetic algorithm for generating initial parameter estimations for kinetic models of catalytic processes , 1996 .

[19]  Ning Wang,et al.  A protein inspired RNA genetic algorithm for parameter estimation in hydrocracking of heavy oil , 2011 .

[20]  Olympia Roeva Genetic Algorithms for a Parameter Estimation of a Fermentation Process Model: A Comparison , 2005 .

[21]  Won Kook Lee,et al.  New reactor system for supercritical water oxidation and its application on phenol destruction , 1997 .