On the Optimal Control Law for Linear Discrete Time Hybrid Systems

In this paper we study the solution to optimal control problems for discrete time linear hybrid systems. First, we prove that the closed form of the state-feedback solution to finite time optimal control based on quadratic or linear norms performance criteria is a time-varying piecewise affine feedback control law. Then, we give an insight into the structure of the optimal state-feedback solution and of the value function. Finally, we briefly describe how the optimal control law can be computed by means of multiparametric programming.

[1]  B. Schutter,et al.  The extended linear complementarity problem and its applications in the analysis and control of discrete event systems and hybrid systems , 1997 .

[2]  C. Iung,et al.  Linear quadratic optimization for hybrid systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[3]  Panos J. Antsaklis,et al.  Hybrid Systems V , 1999, Lecture Notes in Computer Science.

[4]  J. Lygeros,et al.  A game theoretic approach to controller design for hybrid systems , 2000, Proceedings of the IEEE.

[5]  A. Rantzer,et al.  Optimal control of hybrid systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[6]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[7]  E. Pistikopoulos,et al.  A multiparametric programming approach for linear process engineering problems under uncertainty , 1997 .

[8]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[9]  M. Morari,et al.  Predictive Control of Constrained Hybrid Systems , 2000 .

[10]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[11]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[12]  M. Morari,et al.  Geometric Algorithm for Multiparametric Linear Programming , 2003 .

[13]  B. Schutter,et al.  Model predictive control for max-plus-linear systems , 2000, ACC.

[14]  Martin Buss,et al.  Towards Hybrid Optimal Control , 2000 .

[15]  John Lygeros,et al.  Controllers for reachability specifications for hybrid systems , 1999, Autom..

[16]  M. Branicky,et al.  Solving hybrid control problems: level sets and behavioral programming , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[17]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[18]  Richard C. Larson,et al.  Model Building in Mathematical Programming , 1979 .

[19]  W. Heemels Linear complementarity systems : a study in hybrid dynamics , 1999 .

[20]  M. Egerstedt,et al.  On the regularization of Zeno hybrid automata , 1999 .

[21]  B. Piccoli Necessary conditions for hybrid optimization , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[22]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[23]  Alberto Bemporad,et al.  A Hybrid Approach to Traction Control , 2001, HSCC.

[24]  Tomas Gal,et al.  Postoptimal Analyses, Parametric Programming, and Related Topics: Degeneracy, Multicriteria Decision Making, Redundancy , 1994 .

[25]  B. De Moor,et al.  The extended linear complementarity problem , 1995, Math. Program..

[26]  Christos G. Cassandras,et al.  A hierarchical decomposition method for optimal control of hybrid systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[27]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[28]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[29]  M. Branicky,et al.  Algorithms for optimal hybrid control , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[30]  M. Morari,et al.  Stability and stabilization of piecewise affine and hybrid systems: an LMI approach , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[31]  Efstratios N. Pistikopoulos,et al.  An Algorithm for the Solution of Multiparametric Mixed Integer Linear Programming Problems , 2000, Ann. Oper. Res..

[32]  Alberto Bemporad,et al.  Optimization-Based Verification and Stability Characterization of Piecewise Affine and Hybrid Systems , 2000, HSCC.

[33]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[34]  Stephen P. Boyd,et al.  Quadratic stabilization and control of piecewise-linear systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[35]  M. Morari,et al.  Explicit solution of LP-based model predictive control , 2000 .

[36]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[37]  Arjan van der Schaft,et al.  Complementarity modelling of hybrid systems , 1997 .

[38]  A. J. van der Schaft,et al.  Complementarity modeling of hybrid systems , 1998, IEEE Trans. Autom. Control..

[39]  H. Sussmann,et al.  A maximum principle for hybrid optimal control problems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).