A class of infinite horizon mean field games on networks

We consider stochastic mean field games for which the state space is a network. In the ergodic case, they are described by a system coupling a Hamilton-Jacobi-Bellman equation and a Fokker-Planck equation, whose unknowns are the invariant measure m, a value function u, and the ergodic constant ρ. The function u is continuous and satisfies general Kirchhoff conditions at the vertices. The invariant measure m satisfies dual transmission conditions: in particular, m is discontinuous across the vertices in general, and the values of m on each side of the vertices satisfy special compatibility conditions. Existence and uniqueness are proven, under suitable assumptions.

[1]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[2]  Yves Achdou,et al.  HAMILTON-JACOBI EQUATIONS FOR OPTIMAL CONTROL ON JUNCTIONS AND NETWORKS ∗, ∗∗ , 2015 .

[3]  Alessio Porretta,et al.  Weak Solutions to Fokker–Planck Equations and Mean Field Games , 2015 .

[4]  Mauro Garavello,et al.  Traffic Flow on Networks , 2006 .

[5]  Cyril Imbert,et al.  Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks , 2013, 1306.2428.

[6]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[7]  Mark Freidlin,et al.  Diffusion Processes on Graphs and the Averaging Principle , 1993 .

[8]  Yves Achdou,et al.  Mean Field Games: Numerical Methods , 2010, SIAM J. Numer. Anal..

[9]  Mark Freidlin,et al.  Diffusion processes on graphs: stochastic differential equations, large deviation principle , 2000 .

[10]  Alessio Porretta,et al.  On the weak theory for mean field games systems , 2017 .

[11]  Fabio Camilli,et al.  Stationary Mean Field Games Systems Defined on Networks , 2015, SIAM J. Control. Optim..

[12]  Eszter Sikolya,et al.  Vertex control of flows in networks , 2008, Networks Heterog. Media.

[13]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[14]  Pierre-Louis Lions,et al.  Well posedness for multi-dimensional junction problems with Kirchoff-type conditions , 2017 .

[15]  Wilfredo Salazar,et al.  Homogenization of second order discrete model with local perturbation and application to traffic flow , 2016 .

[16]  Diogo A. Gomes,et al.  On the existence of classical solutions for stationary extended mean field games , 2013, 1305.2696.

[17]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[18]  Fabio Camilli,et al.  The vanishing viscosity limit for Hamilton-Jacobi equations on networks , 2012, 1207.6535.

[19]  Yves Achdou,et al.  Convergence of a Finite Difference Scheme to Weak Solutions of the System of Partial Differential Equations Arising in Mean Field Games , 2015, SIAM J. Numer. Anal..

[20]  Joachim von Below,et al.  Classical solvability of linear parabolic equations on networks , 1988 .

[21]  Yves Achdou,et al.  Finite Difference Methods for Mean Field Games , 2013 .

[22]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[23]  Hasnaa Zidani,et al.  A Hamilton-Jacobi approach to junction problems and application to traffic flows , 2011, 1107.3250.

[24]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[25]  P. Cardaliaguet,et al.  Mean Field Games , 2020, Lecture Notes in Mathematics.

[26]  P. E. Souganidis,et al.  Viscosity solutions for junctions: well posedness and stability , 2016 .

[27]  Diogo A. Gomes,et al.  Time dependent mean-field games in the superquadratic case , 2013, 1311.6684.

[28]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[29]  Yves Achdou,et al.  Hamilton–Jacobi equations constrained on networks , 2013 .

[30]  Peter E. Caines,et al.  An Invariance Principle in Large Population Stochastic Dynamic Games , 2007, J. Syst. Sci. Complex..

[31]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[32]  Edgard A. Pimentel,et al.  Local regularity for mean-field games in the whole space , 2014, 1407.0942.

[33]  P. Lions,et al.  Mean field games , 2007 .