List vertex arboricity of planar graphs without 5-cycles intersecting with 6-cycles

The vertex arboricity $ a(G) $ of a graph $ G $ is the minimum number of colors required to color the vertices of $ G $ such that no cycle is monochromatic. The list vertex arboricity $ a_l(G) $ is the list version of this concept. In this paper, we prove that if $ G $ is a planar graph without 5-cycles intersecting with 6-cycles, then $ a_l(G)\le 2 $.

[1]  Gary Chartrand,et al.  The point-arboricity of a graph , 1968 .

[2]  Ko-Wei Lih,et al.  Choosability and edge choosability of planar graphs without five cycles , 2002, Appl. Math. Lett..

[3]  Haihui Zhang,et al.  Vertex arboricity of toroidal graphs with a forbidden cycle , 2014, Discret. Math..

[4]  Oleg V. Borodin,et al.  Circuit decompositions of join-covered graphs , 2009 .

[5]  Wei-Fan Wang,et al.  Vertex arboricity of planar graphs without chordal 6-cycles , 2013, Int. J. Comput. Math..

[6]  Wei-Fan Wang,et al.  On the vertex-arboricity of planar graphs without 7-cycles , 2012, Discret. Math..

[7]  Weifan Wang,et al.  List Vertex-arboricity of Planar Graphs without Intersecting 5-cycles , 2020 .

[8]  Min Chen,et al.  A note on the list vertex arboricity of toroidal graphs , 2018, Discret. Math..

[9]  S. L. Hakimi,et al.  A Note on the Vertex Arboricity of a Graph , 1989, SIAM J. Discret. Math..

[10]  Min Chen,et al.  Toroidal graphs without 3-cycles adjacent to 5-cycles have list vertex-arboricity at most 2 , 2015 .

[11]  Lin Sun,et al.  Vertex arboricity of planar graphs without intersecting 5-cycles , 2018, J. Comb. Optim..

[12]  Min Chen,et al.  Vertex-arboricity of planar graphs without intersecting triangles , 2012, Eur. J. Comb..

[13]  Yuan Jinjiang,et al.  On the vertex arboricity of planar graphs of diameter two , 2007 .

[14]  Min Chen,et al.  List vertex-arboricity of toroidal graphs without 4-cycles adjacent to 3-cycles , 2016, Discret. Math..

[15]  H. Zhang On list vertex 2-arboricity of toroidal graphs without cycles of specific length , 2016 .

[16]  Bojan Mohar,et al.  Planar Graphs Without Cycles of Specific Lengths , 2002, Eur. J. Comb..

[17]  André Raspaud,et al.  On the vertex-arboricity of planar graphs , 2008, Eur. J. Comb..

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .