Automatisiertes Tracking von Kopf- und Augenbewegungen bei 360°-Stimulation zur Charakterisierung des visuellen Systems kleiner Wirbeltiere

In der Verhaltensforschung an Tieren ist es ein grundlegendes Problem, dass sich diese im Gegensatz zu Menschen nicht mitteilen konnen und somit eindeutige, objektive Verhaltenskriterien bestimmt werden mussen, um festzustellen, ob ein Tier einen Stimulus wahrnehmen kann. Ein gangiges Verfahren, um Wahrnehmungsschwellen des visuellen Systems zu ermitteln, ist die Messung des optokinetischen Reflexes (OKR), einer typischen Korper-, Kopf- und Augenbewegung, die beim Menschen und vielen Tieren auftritt, wenn ein repetitives, sich gleichmasig bewegendes Muster prasentiert wird. In der folgenden Arbeit werden neue Ansatze und Algorithmen zur OKR-Messung an kleinen Tieren, insbesondere Wasserschildkroten und Mausen mit Hilfe eines Kamera-basierten Trackings und einer visuellen 360°-Stimulation vorgestellt. Die automatische Erfassung der Kopfbewegung erlaubt nicht nur eine quantitative und objektive Auswertung der Versuche, sondern erlaubt es zudem, den Stimulus wahrend eines Versuchs kontinuierlich an die Position des Tiers anzupassen, was prazisere Messungen und viele neuartige Versuche ermoglicht.

[1]  Andrew D. Zaharia,et al.  The Detection of Visual Contrast in the Behaving Mouse , 2011, The Journal of Neuroscience.

[2]  Charles A. Poynton,et al.  Gamma and Its Disguises : The Nonlinear Mappings of Intensity in Perception, CRTs, Film, and Video , 1993 .

[3]  Linda J. Hayes,et al.  Video imaging system for automated shaping and analysis of complex locomotory behavior , 2009, Journal of Neuroscience Methods.

[4]  Karl U. Smith,et al.  The Functions of the Visual Cortex in Optic Nystagmus at Different Velocities of Movement in the Visual Field , 1940 .

[5]  R. Morris Developments of a water-maze procedure for studying spatial learning in the rat , 1984, Journal of Neuroscience Methods.

[6]  E. Lomakina-Rumyantseva,et al.  Video tracking and behaviour segmentation of laboratory rodents , 2009, Pattern Recognition and Image Analysis.

[7]  G. Jones,et al.  Frequency—response analysis of central vestibular unit activity resulting from rotational stimulation of the semicircular canals , 1971, The Journal of physiology.

[8]  Michael Isard,et al.  Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion , 2000 .

[9]  Alexander Zelinsky,et al.  Fast Radial Symmetry for Detecting Points of Interest , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  H. Collewijn,et al.  Optokinetic reactions in man elicited by localized retinal motion stimuli , 1979, Vision Research.

[11]  Lance M. Optican,et al.  Unix-based multiple-process system, for real-time data acquisition and control , 1982 .

[12]  T Ohtsuka,et al.  Spectral sensitivities of seven morphological types of photoreceptors in the retina of the turtle, Geoclemys reevesii , 1985, The Journal of comparative neurology.

[13]  J. Simpson,et al.  Spatial organization of visual messages of the rabbit's cerebellar flocculus. I. Typology of inferior olive neurons of the dorsal cap of Kooy. , 1988, Journal of neurophysiology.

[14]  R. Williams,et al.  Mouse models for the analysis of myopia: an analysis of variation in eye size of adult mice. , 1999, Optometry and vision science : official publication of the American Academy of Optometry.

[15]  Herwig Baier,et al.  Visuomotor Behaviors in Larval Zebrafish after GFP-Guided Laser Ablation of the Optic Tectum , 2003, The Journal of Neuroscience.

[16]  P. Koulen,et al.  Quantification of deficits in spatial visual function of mouse models for glaucoma. , 2011, Investigative ophthalmology & visual science.

[17]  Picaud Serge,et al.  The optomotor response: A robust first-line visual screening method for mice , 2005, Vision Research.

[18]  M. Gresty Eye, head and body movements of the guinea pig in response to optokinetic stimulation and sinusoidal oscillation in yaw , 2004, Pflügers Archiv.

[19]  P. E. Hallett,et al.  A schematic eye for the mouse, and comparisons with the rat , 1985, Vision Research.

[20]  Michael J. Magee,et al.  The Perspective View of Three Points , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  N. Mangini,et al.  The optokinetic nystagmus and ocular pigmentation of hypopigmented mouse mutants , 1985, The Journal of comparative neurology.

[22]  M. Vernon,et al.  METHODS OF RECORDING EYE MOVEMENTS , 1928, The British journal of ophthalmology.

[23]  T. Shimazoe,et al.  Repeated adenosine pre-treatment potentiates the acute effect of methamphetamine in rats. , 2000, Japanese journal of pharmacology.

[24]  Paul R. Cohen,et al.  Camera Calibration with Distortion Models and Accuracy Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  K. Kawano,et al.  Distribution of optokinetic sensitivity across the retina of mice in relation to eye orientation , 2010, Neuroscience.

[26]  J. Baker,et al.  The vestibulo ocular reflex (VOR) in otoconia deficient head tilt (het) mutant mice versus wild type C57BL/6 mice , 2003, Brain Research.

[27]  D G Pelli,et al.  Pixel independence: measuring spatial interactions on a CRT display. , 1997, Spatial vision.

[28]  Steven T. Moore,et al.  A geometric basis for measurement of three-dimensional eye position using image processing , 1996, Vision Research.

[29]  T. Kavanagh,et al.  Behavioral Characterization of GCLM-Knockout Mice, a Model for Enhanced Susceptibility to Oxidative Stress , 2011, Journal of toxicology.

[30]  Robert W. Silverman,et al.  A microcomputer-controlled system for measuring reactivity in small animals , 1988 .

[31]  S. Itohara,et al.  Dynamic characteristics and adaptability of mouse vestibulo-ocular and optokinetic response eye movements and the role of the flocculo-olivary system revealed by chemical lesions. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[33]  J. S Stahl,et al.  A comparison of video and magnetic search coil recordings of mouse eye movements , 2000, Journal of Neuroscience Methods.

[34]  Yuichi Motai,et al.  A Real-Time Rodent Tracking System for Both Light and Dark Cycle Behavior Analysis , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[35]  Joel Pokorny,et al.  Characterization and use of a digital light projector for vision research , 2001, Vision Research.

[36]  Jeremy Nathans,et al.  The Optokinetic Reflex as a Tool for Quantitative Analyses of Nervous System Function in Mice: Application to Genetic and Drug-Induced Variation , 2008, PloS one.

[37]  M. Gresty Coordination of head and eye movements to fixate continuous and intermittent targets. , 1974, Vision research.

[38]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[40]  Yehezkel Yeshurun,et al.  Context-free attentional operators: The generalized symmetry transform , 1995, International Journal of Computer Vision.

[41]  J. Goldberg,et al.  Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. 3. Variations among units in their discharge properties. , 1971, Journal of neurophysiology.

[42]  Livia S. Carvalho,et al.  Evolution and spectral tuning of visual pigments in birds and mammals , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[43]  I. Thompson,et al.  Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. , 2003, Journal of neurophysiology.

[44]  Azriel Rosenfeld,et al.  Histogram concavity analysis as an aid in threshold selection , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[45]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  R. Sidman,et al.  Differential effect of the rd mutation on rods and cones in the mouse retina. , 1978, Investigative ophthalmology & visual science.

[47]  M Donaghy,et al.  The contrast sensitivity, spatial resolution and velocity tuning of the cat's optokinetic reflex. , 1980, The Journal of physiology.

[48]  W. H. Gispen,et al.  Classification of rat behavior with an image-processing method and a neural network , 2000, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[49]  A. Wirz-Justice,et al.  Evening Exposure to a Light Emitting Diodes (led)-backlit Computer Screen Affects Circadian Physiology and Cognitive Performance 2 3 4 , 2022 .

[50]  Christa Neumeyer,et al.  Motion detection in goldfish investigated with the optomotor response is “color blind” , 1996, Vision Research.

[51]  Brett J. Graham,et al.  A Self-Calibrating, Camera-Based Eye Tracker for the Recording of Rodent Eye Movements , 2010, Front. Neurosci..

[52]  K. Frisch,et al.  Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen , 1949, Experientia.

[53]  Eye, Retina, and Visual System of the Mouse , 2009 .

[54]  T. S. Benice,et al.  Object recognition analysis in mice using nose-point digital video tracking , 2008, Journal of Neuroscience Methods.

[55]  Serge Belongie,et al.  Three Brown Mice : See How They Run , 2003 .

[56]  Peng Wang,et al.  An LCD Monitor with Sufficiently Precise Timing for Research in Vision , 2011, Front. Hum. Neurosci..

[57]  C I De Zeeuw,et al.  Oculomotor plasticity during vestibular compensation does not depend on cerebellar LTD. , 2006, Journal of neurophysiology.

[58]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[59]  J. Buxbaum,et al.  Advancing Paternal Age Is Associated with Deficits in Social and Exploratory Behaviors in the Offspring: A Mouse Model , 2009, PloS one.

[60]  S. Ahlénius,et al.  Photocell measurements of rat motor activity. A contribution to sensitivity and variation in behavioral observations. , 1991, Journal of pharmacological methods.

[61]  K. Hashimoto,et al.  The effects of FK506, a specific calcineurin inhibitor, on methamphetamine-induced behavioral change and its sensitization in rats , 2001, Psychopharmacology.

[62]  N. Marshall,et al.  Independent and conjugate eye movements during optokinesis in teleost fish. , 2002, The Journal of experimental biology.

[63]  Pascal Poncin,et al.  Comparing the EthoVision 2.3 system and a new computerized multitracking prototype system to measure the swimming behavior in fry fish , 2006, Behavior research methods.

[64]  W. Douthwaite,et al.  CRITICAL FUSION FREQUENCY IN THE CENTRAL VISUAL FIELD , 1985, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[65]  S. Liversedge,et al.  Oxford handbook of eye movements , 2011 .

[66]  H. Dartnall,et al.  The interpretation of spectral sensitivity curves. , 1953, British medical bulletin.

[67]  Kwangjae Sung,et al.  Analysis Of Two Video Eye Tracking Algorithms , 1991, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991.

[68]  Olavo B. Amaral,et al.  A simple webcam-based approach for the measurement of rodent locomotion and other behavioural parameters , 2006, Journal of Neuroscience Methods.

[69]  Martin Hrabé de Angelis,et al.  Variation of the response to the optokinetic drum among various strains of mice. , 2008, Frontiers in bioscience : a journal and virtual library.

[70]  Takashi Yoshida,et al.  Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate receptor δ2 subunit or Purkinje cells , 2005, The European journal of neuroscience.

[71]  M. Špinka,et al.  Computer-aided method for calculating animal configurations during social interactions from two-dimensional coordinates of color-marked body parts , 2001, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[72]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[73]  J. Stahl,et al.  Eye orientation during static tilts and its relationship to spontaneous head pitch in the laboratory mouse , 2008, Brain Research.

[74]  R. Remmel,et al.  An Inexpensive Eye Movement Monitor Using the Scleral Search Coil Technique , 1984, IEEE Transactions on Biomedical Engineering.

[75]  M. Vorobyev,et al.  Animal colour vision — behavioural tests and physiological concepts , 2003, Biological reviews of the Cambridge Philosophical Society.

[76]  L. Maffei,et al.  The visual physiology of the wild type mouse determined with pattern VEPs , 1999, Vision Research.

[77]  D. Tank,et al.  Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. , 2004, Journal of neurophysiology.

[78]  Rafael C. González,et al.  Digital image processing, 3rd Edition , 2008 .

[79]  A. J Spink,et al.  The EthoVision video tracking system—A tool for behavioral phenotyping of transgenic mice , 2001, Physiology & Behavior.

[80]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[81]  Jürgen Golz,et al.  Colorimetry for CRT displays. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[82]  A M Granda,et al.  Microspectrophotometric measurements of visual pigments in two species of turtle, Pseudemys scripta and Chelonia mydas. , 1971, Vision research.

[83]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[84]  J. Nathans,et al.  Mechanisms of spectral tuning in the mouse green cone pigment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Yumiko Umino,et al.  Speed, Spatial, and Temporal Tuning of Rod and Cone Vision in Mouse , 2008, The Journal of Neuroscience.

[86]  Ta-Te Lin,et al.  An infrared range camera-based approach for three-dimensional locomotion tracking and pose reconstruction in a rodent , 2011, Journal of Neuroscience Methods.

[87]  Takashi Yoshida,et al.  Increased occurrence of climbing fiber inputs to the cerebellar flocculus in a mutant mouse is correlated with the timing delay of optokinetic response , 2007, The European journal of neuroscience.

[88]  C J Twining,et al.  Robust tracking and posture description for laboratory rodents using active shape models , 2001, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[89]  Laura Gianfranceschi,et al.  PII: S0042-6989(98)00169-2 , 1998 .

[90]  H. Collewijn,et al.  Vergence eye movements of the rabbit in visuomotor behavior , 1979, Vision Research.

[91]  Shih-Chii Liu,et al.  Oculomotor Instabilities in Zebrafish Mutant belladonna: A Behavioral Model for Congenital Nystagmus Caused by Axonal Misrouting , 2006, The Journal of Neuroscience.

[92]  W. Precht,et al.  Resetting fast phases of head and eye and their linkage in the frog , 2004, Experimental Brain Research.

[93]  W. N. Hayes,et al.  Optokinetic response of the guinea pig. , 1969, Journal of comparative and physiological psychology.

[94]  Elias Robles,et al.  A method to analyze the spatial distribution of behavior , 1990 .

[95]  Mehdi Hatamian,et al.  Design Considerations for a Real-Time Ocular Counterroll Instrument , 1983, IEEE Transactions on Biomedical Engineering.

[96]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[97]  C. I. De Zeeuw,et al.  The dynamic characteristics of the mouse horizontal vestibulo-ocular and optokinetic response , 2001, Brain Research.

[98]  Hironobu Fujiyoshi,et al.  Moving target classification and tracking from real-time video , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[99]  N H MACKWORTH,et al.  Eye fixations recorded on changing visual scenes by the television eye-marker. , 1958, Journal of the Optical Society of America.

[100]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[101]  H. Collewijn Eye‐ and head movements in freely moving rabbits. , 1977, The Journal of physiology.

[102]  J. P. Lewis Fast Normalized Cross-Correlation , 2010 .

[103]  R. Douglas,et al.  Behavioral assessment of visual acuity in mice and rats , 2000, Vision Research.

[104]  Tadashi Isa,et al.  PC-based high-speed video-oculography for measuring rapid eye movements in mice , 2004, Neuroscience Research.

[105]  Ian Q. Whishaw,et al.  A comparison of rats and mice in a swimming pool place task and matching to place task: Some surprising differences , 1995, Physiology & Behavior.

[106]  R M Douglas,et al.  Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system , 2005, Visual Neuroscience.

[107]  John Yarno,et al.  A preformed scleral search coil for measuring mouse eye movements , 2010, Journal of Neuroscience Methods.

[108]  R. Dodge An experimental study of visual fixation , 1907 .

[109]  R. E. Brown,et al.  Visual detection, pattern discrimination and visual acuity in 14 strains of mice , 2006, Genes, brain, and behavior.

[110]  Roger W. Sperry,et al.  OPTIC NERVE REGENERATION WITH RETURN OF VISION IN ANURANS , 1944 .

[111]  Linda G. Shapiro,et al.  A new connected components algorithm for virtual memory computers , 1983, Comput. Vis. Graph. Image Process..

[112]  D. Sinex,et al.  A psychophysical investigation of spatial vision in the normal and reeler mutant mouse , 1979, Vision Research.

[113]  M. Frens,et al.  Age-and Sex-Related Differences in Contrast Sensitivity in C 57 Bl / 6 Mice , 2009 .

[114]  W. Precht,et al.  Differences in the central organization of gaze stabilizing reflexes between frog and turtle , 1983, Journal of comparative physiology.

[115]  Oliver Schreer Stereoanalyse und Bildsynthese , 2007 .

[116]  D. Bennett,et al.  The Colors of Mice: A Model Genetic Network , 2010 .

[117]  L. Pinto,et al.  Visually evoked eye movements in the mouse (Mus musculus) , 1976, Vision Research.

[118]  B. Image processing for improved eye-tracking accuracy , 2010 .

[119]  Ehud Rivlin,et al.  Robust 3D Head Tracking Using Camera Pose Estimation , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[120]  K. Funabiki,et al.  Erratum to “Dynamic properties, interactions and adaptive modifications of vestibulo-ocular reflex and optokinetic response in mice” [Neuroscience Research 39 (2001) 299–311] , 2001, Neuroscience Research.

[121]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[122]  Henry N. Wagner,et al.  A new method of monitoring motor activity in baboons , 1996 .

[123]  H. Collewijn,et al.  Precise recording of human eye movements , 1975, Vision Research.

[124]  Stephen J. McKenna,et al.  Tracking interacting people , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[125]  Jesse Brodkin,et al.  A novel apparatus for measuring rat locomotor behavior , 1995, Journal of Neuroscience Methods.

[126]  Edward S Boyden,et al.  Active Reversal of Motor Memories Reveals Rules Governing Memory Encoding , 2003, Neuron.

[127]  Kenji Kawano,et al.  Initiation of the optokinetic response (OKR) in mice. , 2011, Journal of vision.

[128]  U. Dräger,et al.  Origins of crossed and uncrossed retinal projections in pigmented and albino mice , 1980, The Journal of comparative neurology.

[129]  D J Heeren,et al.  Classifying postures of freely moving rodents with the help of fourier descriptors and a neural network , 2000, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[130]  PII: S0042-6989(96)00229-5 , 1997 .

[131]  V. Govardovskii,et al.  Photoreceptors and visual pigments in the red-eared turtle, Trachemys scripta elegans. , 2001, Visual neuroscience.

[132]  David C. Hogg,et al.  Learning Variable-Length Markov Models of Behavior , 2001, Comput. Vis. Image Underst..

[133]  K. U. Smith,et al.  The neural mechanisms of movement vision and optic nystagmus. , 1943 .

[134]  Stephan C F Neuhauss,et al.  The optokinetic response in zebrafish and its applications. , 2008, Frontiers in bioscience : a journal and virtual library.

[135]  Norbert Bartneck A general data structure for image analysis based on a description of connected components , 2005, Computing.

[136]  Peter Fransson,et al.  Keeping It Short , 2004, Psychological science.

[137]  R. Douglas,et al.  Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. , 2004, Investigative ophthalmology & visual science.

[138]  J. Takahashi,et al.  Methods to record circadian rhythm wheel running activity in mice. , 2005, Methods in enzymology.

[139]  S. Easter,et al.  Pursuit eye movements in goldfish (Carassius auratus). , 1972, Vision research.

[140]  J. Fuller,et al.  Eye and head movements during vestibular stimulation in the alert rabbit , 1981, Brain Research.

[141]  V. Graf De Lange characteristics for the fresh-water turtle Chrysemys picta picta, and the pigeon Columba livia. , 1973, Vision research.

[142]  Michael P. Jones,et al.  Avian vision: a review of form and function with special consideration to birds of prey , 2007 .

[143]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[144]  Konrad Lehmann,et al.  Age-Dependent Ocular Dominance Plasticity in Adult Mice , 2008, PloS one.

[145]  F. Schaeffel,et al.  Relative axial myopia in Egr-1 (ZENK) knockout mice. , 2007, Investigative ophthalmology & visual science.

[146]  J. Crawley,et al.  Behavioral phenotyping of transgenic and knockout mice: practical concerns and potential pitfalls. , 2006, ILAR journal.

[147]  I. Jackson,et al.  Presence of visual head tracking differentiates normal sighted from retinal degenerate mice , 2002, Neuroscience Letters.

[148]  Daniel E. Wollman,et al.  Phase locking of neuronal responses to the vertical refresh of computer display monitors in cat lateral geniculate nucleus and striate cortex , 1995, Journal of Neuroscience Methods.

[149]  T. Haslwanter Mathematics of three-dimensional eye rotations , 1995, Vision Research.

[150]  Michael Vinther,et al.  Validation of a digital video tracking system for recording pig locomotor behaviour , 2005, Journal of Neuroscience Methods.

[151]  Douglas Wahlsten,et al.  The precision of video and photocell tracking systems and the elimination of tracking errors with infrared backlighting , 2010, Journal of Neuroscience Methods.

[152]  M. Bach,et al.  Raster-scan cathode-ray tubes for vision research--limits of resolution in space, time and intensity, and some solutions. , 1997, Spatial vision.

[153]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[154]  Dongheng Li,et al.  Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[155]  P. Strata,et al.  Saccadic Eye Movements and Gaze Holding in the Head‐Restrained Pigmented Rat , 1989, The European journal of neuroscience.

[156]  K. Anraku,et al.  Near-ultraviolet radiation guides the emerged hatchlings of loggerhead turtles Caretta caretta (Linnaeus) from a nesting beach to the sea at night , 2009 .

[157]  L. Peichl Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[158]  M. Seeliger,et al.  Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function. , 2005, Investigative ophthalmology & visual science.

[159]  I. Cuthill,et al.  The influence of flicker rate on plasma corticosterone levels of European starlings, Sturnus vulgaris. , 2001, General and comparative endocrinology.

[160]  J. Crabbe,et al.  Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades , 2006, Proceedings of the National Academy of Sciences.

[161]  R. Foster Keeping an eye on the time: the Cogan Lecture. , 2002, Investigative ophthalmology & visual science.

[162]  M L Mendelsohn,et al.  THE ANALYSIS OF CELL IMAGES * , 1966, Annals of the New York Academy of Sciences.

[163]  U. Drager,et al.  Observations on monocular deprivation in mice. , 1978 .

[164]  Stephan C F Neuhauss,et al.  Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response. , 2005, Investigative ophthalmology & visual science.

[165]  C. Taylor,et al.  Active shape models - 'Smart Snakes'. , 1992 .

[166]  T. Ljungberg,et al.  A method for simultaneous recording of eight behavioral parameters related to monoamine neurotransmission , 1978, Pharmacology Biochemistry and Behavior.

[167]  L P Noldus,et al.  EthoVision: A versatile video tracking system for automation of behavioral experiments , 2001, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[168]  Joseph N. Wilson,et al.  Handbook of computer vision algorithms in image algebra , 1996 .

[169]  R. Bárány Die Untersuchung der reflektorischen vestibulären und optischen Augenbewegungen und ihre Bedeutung für die topische Diagnostik der Augenmuskellähmungen , 1907 .

[170]  R. Baker,et al.  Discharge characteristics of medial rectus and abducens motoneurons in the goldfish. , 1991, Journal of neurophysiology.

[171]  Andreas Hein,et al.  Virtual experimental arena for behavioral experiments on small vertebrates , 2011, 2011 4th International Congress on Image and Signal Processing.

[172]  Stefan Kohlbecher,et al.  Calibration-free eye tracking by reconstruction of the pupil ellipse in 3D space , 2008, ETRA.

[173]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[174]  Karl Pearson,et al.  On Theories of Association , 1913 .

[175]  Ernst Mach,et al.  Grundlinien der Lehre von den Bewegungsempfindungen , 1967 .

[176]  H Collewijn,et al.  Vestibulo‐ocular and optokinetic reactions to rotation and their interaction in the rabbit , 1974, The Journal of physiology.

[177]  A. Hughes,et al.  A schematic eye for the rat , 1979, Vision Research.

[178]  Geraint Rees,et al.  Conscious Awareness of Flicker in Humans Involves Frontal and Parietal Cortex , 2006, Current Biology.

[179]  David W Tank,et al.  Instrumentation for measuring oculomotor performance and plasticity in larval organisms. , 2004, Methods in cell biology.

[180]  S T Moore,et al.  Robust pupil center detection using a curvature algorithm. , 1999, Computer methods and programs in biomedicine.

[181]  Stuart Anstis,et al.  PII: S0042-6989(97)00159-4 , 2003 .