Observational Constraints on the Dependence of Radio-Quiet Quasar X-Ray Emission on Black Hole Mass and Accretion Rate

In this work we use a sample of 318 radio-quiet quasars (RQQs) to investigate the dependence of the ratio of optical/UV flux to X-ray flux, αox, and the X-ray photon index, ΓX, on black hole mass, UV relative to Eddington luminosity, and X-ray relative to Eddington luminosity. Our sample is drawn from the literature, with X-ray data from ROSAT and Chandra, and optical data mostly from the SDSS; 153 of these sources have estimates of ΓX from Chandra. We estimate MBH using standard estimates derived from the Hβ, Mg II, and C IV broad emission lines. Our sample spans a broad range in black hole mass ( -->106 MBH/M☉ 1010), redshift ( -->0 (1043 λ Lλ(2500 A) [ ergs s−1] 1048) . We find that αox increases with increasing MBH and LUV/LEdd and decreases with increasing LX/LEdd. In addition, we confirm the correlation seen in previous studies between ΓX and MBH and both LUV/LEdd and LX/LEdd; however, we also find evidence that the dependence of ΓX of these quantities is not monotonic, changing sign at -->MBH ~ 3 × 108 M☉. We argue that the αox correlations imply that the fraction of bolometric luminosity emitted by the accretion disk, as compared to the corona, increases with increasing accretion rate relative to the Eddington rate, $d{m}$ -->. In addition, we argue that the ΓX trends are caused by a dependence of X-ray spectral index on -->. We discuss our results within the context of accretion models with Comptonizing corona and discuss the implications of the αox correlations for quasar feedback. To date, this is the largest study of the dependence of RQQ X-ray parameters on black hole mass and related quantities, and the first to attempt to correct for the large statistical uncertainty in the broad-line mass estimates.

[1]  Laura Maraschi,et al.  A two-phase model for the X-ray emission from Seyfert galaxies , 1991 .

[2]  D. Grupe,et al.  XMM-Newton Observations of High-Redshift Quasars , 2005, astro-ph/0501521.

[4]  D. Grupe,et al.  X-ray variability in a complete sample of Soft X-ray selected AGN , 2000, astro-ph/0012100.

[5]  J. Chiang,et al.  Accretion Disk Winds from Active Galactic Nuclei , 1995 .

[6]  T. Aldcroft,et al.  Evolution of the X-ray Emission of Radio-quiet Quasars , 2006, astro-ph/0611120.

[7]  W. N. Brandt,et al.  An Exploratory Chandra Survey of a Well-defined Sample of 35 Large Bright Quasar Survey Broad Absorption Line Quasars , 2006 .

[8]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[9]  W. Brandt,et al.  X-Ray Spectroscopy of Quasi-Stellar Objects with Broad Ultraviolet Absorption Lines , 2001, astro-ph/0110579.

[10]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[11]  The XMM-Newton view of PG quasars - I. X-ray continuum and absorption , 2004, astro-ph/0411051.

[12]  A. C. Fabian THE OBSCURED GROWTH OF MASSIVE BLACK HOLES , 1999 .

[13]  The signature of the magnetorotational instability in the Reynolds and Maxwell stress tensors in accretion discs , 2006, astro-ph/0603178.

[14]  D. Schneider,et al.  The X-Ray Properties of the Most Luminous Quasars from the Sloan Digital Sky Survey , 2007, 0705.3059.

[15]  A Catalog of broad absorption line quasars from the sloan digital sky survey third data release , 2006, astro-ph/0603070.

[16]  Guenther Hasinger,et al.  The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era , 2007 .

[17]  The soft x-ray properties of a complete sample of optically selected quasars. 1: First results , 1994, astro-ph/9609164.

[18]  J. Krolik Systematic Errors in the Estimation of Black Hole Masses by Reverberation Mapping , 2000, astro-ph/0012134.

[19]  The X-Ray-to-Optical Properties of Optically Selected Active Galaxies over Wide Luminosity and Redshift Ranges , 2006, astro-ph/0602407.

[20]  Ralf Bender,et al.  THE SLOPE OF THE BLACK HOLE MASS VERSUS VELOCITY DISPERSION CORRELATION , 2002, astro-ph/0203468.

[21]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[22]  Measuring the black hole masses of high-redshift quasars , 2002, astro-ph/0204473.

[23]  Technion,et al.  The Hard X-Ray Spectral Slope as an Accretion Rate Indicator in Radio-quiet Active Galactic Nuclei , 2006, astro-ph/0606389.

[24]  D. Berk,et al.  Soft X-Ray and Ultraviolet Emission Relations in Optically Selected AGN Samples , 2005, astro-ph/0503009.

[25]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[26]  X-ray emission from radio-quiet quasars in the SDSS Early Data Release. The alpha_ox dependence upon UV luminosity , 2002, astro-ph/0211125.

[27]  A. Wandel,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques , 1999 .

[28]  A comparison of the hard ASCA spectral slopes of broad- and narrow-line Seyfert 1 galaxies , 1997, astro-ph/9703100.

[29]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[30]  Emission-Line Properties of z>4 Quasars , 2001, astro-ph/0109328.

[31]  Black Holes in Galaxy Mergers: Evolution of Quasars , 2005, astro-ph/0504190.

[32]  A. Siemiginowska,et al.  High-Redshift Radio-quiet Quasars: Exploring the Parameter Space of Accretion Models. II. Patchy Corona Model , 2004, astro-ph/0410206.

[33]  XMM–Newton observations of high-luminosity radio-quiet quasi-stellar objects , 2004, astro-ph/0405458.

[34]  France.,et al.  Universal spectral shape of high accretion rate agn , 2003, astro-ph/0309242.

[35]  Astrophysics,et al.  Exploratory Chandra Observations of the Highest-Redshift Quasars: X-Rays from the Dawn of the Modern Universe , 2001, astro-ph/0108001.

[36]  Arjun Dey,et al.  Black Hole Masses and Eddington Ratios at 0.3 < z < 4 , 2005, astro-ph/0508657.

[37]  D. Merritt,et al.  The M•-σ Relation for Supermassive Black Holes , 2000, astro-ph/0008310.

[38]  Chris Done,et al.  Is the soft excess in active galactic nuclei real , 2004 .

[39]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[40]  P. Schady,et al.  XMM-Newton Observations of the Laor et al. Sample of PG Quasars , 2006 .

[41]  P. Giommi,et al.  X-ray studies of quasars with the Einstein Observatory. IV - X-ray dependence on radio emission , 1987 .

[42]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[43]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[44]  J. Fox Applied Regression Analysis, Linear Models, and Related Methods , 1997 .

[45]  M. Eracleous,et al.  A Study of Quasar Evolution in the X-Ray Band with the Aid of Gravitational Lensing , 2004, astro-ph/0401013.

[46]  S. Mineshige,et al.  The Hot Disk Corona and Magnetic Turbulence in Radio-quiet Active Galactic Nuclei: Observational Constraints , 2004, astro-ph/0407160.

[47]  A. Siemiginowska,et al.  High-Redshift Radio-quiet Quasars: Exploring the Parameter Space of Accretion Models. I. Hot Semispherical Flow , 2004, astro-ph/0410204.

[48]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[49]  M. Elvis,et al.  The SDSS/XMM-Newton Quasar Sample. I. First Results , 2005, astro-ph/0507434.

[50]  J. C. Lee,et al.  A long hard look at MCG–6-30-15 with XMM-Newton , 2002, astro-ph/0311473.

[51]  J. Turner X‐ray spectra of a large sample of quasars with ASCA , 2000, astro-ph/0003080.

[52]  R. Price,et al.  Accretion disk coronae and Cygnus X-1 , 1977 .

[53]  Cambridge,et al.  X-ray reflection by photoionized accretion discs , 2001, astro-ph/0102040.

[54]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[55]  H. Rix,et al.  A Statistical Study of Rest-Frame Optical Emission Properties in Luminous Quasars at 2.0⩽z⩽2.5* , 1998, astro-ph/9810287.

[56]  B. Wilkes,et al.  An Empirical Ultraviolet Template for Iron Emission in Quasars as Derived from I Zwicky 1 , 2001, astro-ph/0104320.

[57]  Bradley M. Peterson,et al.  The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements , 2006, 0812.2283.

[58]  J. Krolik,et al.  Magnetically Driven Accretion Flows in the Kerr Metric. I. Models and Overall Structure , 2003, astro-ph/0307260.

[59]  D. York,et al.  Continuum and Emission-Line Properties of Broad Absorption Line Quasars , 2003, astro-ph/0308508.

[60]  Cambridge,et al.  Long-Term X-Ray Spectral Variability in Seyfert 1 Galaxies , 2003, astro-ph/0308312.

[61]  G. Madejski,et al.  The Nature of the Emission Components in the Quasar/NLS1 PG 1211+143 , 2001, astro-ph/0104352.

[62]  I. M. McHardy,et al.  Measuring the broad-band power spectra of active galactic nuclei with RXTE , 2002 .

[63]  M. Vestergaard Early Growth and Efficient Accretion of Massive Black Holes at High Redshift , 2003, astro-ph/0309521.

[64]  P. Green,et al.  A Chandra Survey of Broad Absorption Line Quasars , 2001, astro-ph/0105258.

[65]  R. Narayan,et al.  Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991 , 1997 .

[66]  The Relationship between x-ray variability amplitude and black hole mass in active galactic nuclei , 2005, astro-ph/0501471.

[67]  Systematic effects in measurement of black hole masses by emission-line reverberation of active galactic nuclei: Eddington ratio and inclination , 2006, astro-ph/0603460.

[68]  V. Springel,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 9/08/03 BLACK HOLES IN GALAXY MERGERS: THE FORMATION OF RED ELLIPTICAL GALAXIES , 2004 .

[69]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[70]  Laura Maraschi,et al.  X-Ray Spectra from Two-Phase Accretion Disks , 1993 .

[71]  Boulder,et al.  Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation , 2000, astro-ph/0005315.

[72]  D. Proga How Much X-Ray and UV Radiation Processes Are Coupled in Accretion Disks? The Active Galactic Nucleus Case , 2005, astro-ph/0507152.

[73]  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the M-sigma Relationship for AGNs , 2004, astro-ph/0407297.

[74]  H. Tananbaum,et al.  On the cosmological evolution of the X-ray emission from quasars , 1982 .

[75]  Douglas M. Eardley,et al.  A two-temperature accretion disk model for Cygnus X-1: structure and spectrum. , 1976 .

[76]  T. Kii,et al.  AN X-RAY SURVEY OF QUASARS USING ASCA , 1997 .

[77]  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2006, astro-ph/0601303.

[78]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[79]  James Liebert,et al.  X-ray studies of quasars with the Einstein observatory , 1979 .

[80]  Fermilab,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. VI. Sloan Digital Sky Survey Spectrograph Observations , 2001, astro-ph/0103228.

[81]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[82]  Dynamics of Accretion Flows Irradiated by a Quasar , 2007, astro-ph/0702582.

[83]  S. Okumura,et al.  Redshift Differences between the Balmer and [O III] λ5007 Lines in High-Redshift Quasars , 1997 .

[84]  R. Somerville,et al.  High-redshift quasars and the supermassive black hole mass budget: constraints on quasar formation models , 2003, astro-ph/0311008.

[85]  J. Shields,et al.  Chandra survey of radio-quiet, high-redshift quasars , 2002, astro-ph/0204462.

[86]  B. Liu,et al.  Spectra from a Magnetic Reconnection-heated Corona in Active Galactic Nuclei , 2003, astro-ph/0301142.

[87]  G. Palumbo,et al.  Probing the Hard X-Ray Properties of High-Redshift Radio-Quiet Quasars with ASCA , 1998, astro-ph/9812176.

[88]  E. Schinnerer,et al.  The XMM-Newton Wide-Field Survey in the COSMOS Field. IV. X-Ray Spectral Properties of Active Galactic Nuclei , 2007 .

[89]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[90]  On the Vertical Structure of Radiation-Dominated Accretion Disks , 2004, astro-ph/0402539.

[91]  D. Schneider,et al.  X-Ray Lighthouses of the High-Redshift Universe. II. Further Snapshot Observations of the Most Luminous z≳4 Quasars with Chandra , 2005, astro-ph/0503301.

[92]  D. Smith,et al.  Correlation between Compton reflection and X-ray slope in Seyferts and X-ray binaries , 1998, astro-ph/9812215.

[93]  R. Rosner,et al.  Structured coronae of accretion disks , 1979 .

[94]  C. Urry,et al.  Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities , 2002, astro-ph/0207249.

[95]  M. S. Oey,et al.  THE EINSTEIN DATABASE OF IPC X-RAY OBSERVATIONS OF OPTICALLY SELECTED AND RADIO-SELECTED QUASARS .1. , 1994 .

[96]  M. Nowak,et al.  Coronal-temporal correlations in GX 339-4: hysteresis, possible reflection changes and implications for advection-dominated accretion flows , 2002, astro-ph/0201383.

[97]  Stephen J. Ganocy,et al.  Bayesian Statistical Modelling , 2002, Technometrics.

[98]  A. Fabian,et al.  Piecing together the X-ray background : bolometric corrections for active galactic nuclei , 2007, 0708.4308.

[99]  Major mergers of haloes, the growth of massive black holes and the evolving luminosity function of quasars , 2002, astro-ph/0212002.

[100]  Carnegie-Mellon,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[101]  K. Nandra,et al.  ASCA Observations of Seyfert 1 Galaxies. II. Relativistic Iron Kα Emission , 1996, astro-ph/9606169.

[102]  D. Psaltis,et al.  Angular Momentum Transport in Accretion Disks: Scaling Laws in MRI-driven Turbulence , 2007, 0705.0352.

[103]  O. Blaes,et al.  The UV Continuum of Quasars: Models and SDSS Spectral Slopes , 2007, 0707.1456.

[104]  Absorption Systems in the Spectra of 66 z 4 Quasars , 2001, astro-ph/0101179.

[105]  A. Merloni,et al.  Coronal outflow dominated accretion discs: a new possibility for low-luminosity black holes? , 2002 .

[106]  J. Dunlop,et al.  The cosmological evolution of quasar black hole masses , 2003, astro-ph/0310267.

[107]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[108]  Self-regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and X-Ray Luminosity Functions of Quasars , 2003, astro-ph/0304156.

[109]  Magnetically Driven Accretion Flows in the Kerr Metric. IV. Dynamical Properties of the Inner Disk , 2004, astro-ph/0409231.

[110]  Astronomy,et al.  X-Ray Lighthouses of the High-Redshift Universe: Probing the Most Luminous z > 4 Palomar Digital Sky Survey Quasars with Chandra , 2002, astro-ph/0210475.

[111]  J. Trump,et al.  Magellan Spectroscopy of AGN Candidates in the COSMOS Field , 2006, astro-ph/0606016.

[112]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004 .

[113]  A. Janiuk,et al.  Properties of the two-temperature corona model for active galactic nuclei and galactic black hole X-ray Binaries , 1999, astro-ph/9912464.

[114]  K. Gebhardt,et al.  Accretion Disk Temperatures and Continuum Colors in QSOs , 2006, astro-ph/0611263.

[115]  Belinda J. Wilkes,et al.  Quasar energy distributions. I - Soft X-ray spectra of quasars , 1987 .

[116]  D. Maoz,et al.  The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei , 2005, astro-ph/0504484.

[117]  The unusual emission line spectrum of I Zw 1 , 2003, astro-ph/0312654.

[118]  Determining central black hole masses in distant active galaxies , 2002, astro-ph/0204106.

[119]  Self-regulated black hole accretion, the M−σ relation and the growth of bulges in galaxies , 2005, astro-ph/0504400.

[120]  P. O’Brien,et al.  Serendipitous active galactic nuclei in the XMM—Newton fields of Markarian 205 and QSO 0130−403 , 2002, astro-ph/0210140.