Multiple dielectric relaxations and superior sonocatalysis of bismuth iron niobate pyrochlores via high-level Co-doping

[1]  Murugan Ramaswamy,et al.  Emerging scenario on displacive cubic bismuth pyrochlores (Bi,M)MNO7-δ (M = transition metal, N = Nb, Ta, Sb) in context of their fascinating structural, dielectric and magnetic properties , 2020 .

[2]  Shanming Ke,et al.  Ultrasonic vibration driven piezocatalytic activity of lead-free K0.5Na0.5NbO3 materials , 2019 .

[3]  Yingying Zhang,et al.  Enhancing the Sonolysis Efficiency of SrTiO3 Particles with Cr-Doping , 2019, Catalysis Letters.

[4]  C. Lam,et al.  Harvesting the Vibration Energy of BiFeO3 Nanosheets for Hydrogen Evolution. , 2019, Angewandte Chemie.

[5]  Zhenxiang Cheng,et al.  Enhancing oxygen evolution efficiency of multiferroic oxides by spintronic and ferroelectric polarization regulation , 2019, Nature Communications.

[6]  N. Cheng,et al.  Structural modulation enables magneto-dielectric effect and enhanced photoactivity in ferroelectric bismuth iron niobate pyrochlore , 2019, Journal of Materials Chemistry C.

[7]  Zhenxiang Cheng,et al.  Optimized Electronic Configuration to Improve the Surface Absorption and Bulk Conductivity for Enhanced Oxygen Evolution Reaction. , 2019, Journal of the American Chemical Society.

[8]  Yalin Lu,et al.  Sonocatalysis of the magnetic recyclable layered perovskite oxides. , 2018, Ultrasonics sonochemistry.

[9]  Lang Wang,et al.  Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis , 2018, Journal of Alloys and Compounds.

[10]  S. Balakumar,et al.  Understanding the lattice composition directed in situ structural disorder for enhanced visible light photocatalytic activity in Bismuth iron niobate pyrochlore , 2018 .

[11]  Xiao Zhenyu,et al.  Dielectric relaxation and microwave absorption properties of aurivillius-type multiferroic ceramics , 2018, Ceramics International.

[12]  Yalin Lu,et al.  Nanoscale Structural Modulation and Low-temperature Magnetic Response in Mixed-layer Aurivillius-type Oxides , 2018, Scientific Reports.

[13]  Yalin Lu,et al.  Enhanced Photocatalytic Activities of g-C3N4 via Hybridization with a Bi-Fe-Nb-Containing Ferroelectric Pyrochlore. , 2017, ACS applied materials & interfaces.

[14]  Weiqi Qian,et al.  Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis , 2017 .

[15]  J. Dai,et al.  Multiferroic property, dielectric response, and scaling behavior in Aurivillius Bi4.25Gd0.75Fe0.5Co0.5Ti3O15 ceramic , 2017 .

[16]  R. Murugan,et al.  Displacive disorder and spin frustration hosted multiferroic orders in pyrochlore–spinel composites , 2016 .

[17]  Yalin Lu,et al.  Multifunctional Single-Phase Photocatalysts: Extended Near Infrared Photoactivity and Reliable Magnetic Recyclability , 2015, Scientific Reports.

[18]  Jie Yang,et al.  Ferrimagnetic and spin-glass transition in the Aurivillius compound SrBi5Ti4Cr0.5Co0.5O18 , 2015 .

[19]  M. Zhou,et al.  Sonocatalytic degradation of RhB over LuFeO3 particles under ultrasonic irradiation. , 2015, Journal of hazardous materials.

[20]  Min Liu,et al.  Low magnetic field response single-phase multiferroics under high temperature , 2015 .

[21]  Yalin Lu,et al.  Nanoscale structural modulation and enhanced room-temperature multiferroic properties. , 2014, Nanoscale.

[22]  J. Nino,et al.  Dielectric Properties and Relaxation of Bi2Ti2O7 , 2014 .

[23]  M. Fanetti,et al.  Intensive visible-light photoactivity of Bi- and Fe-containing pyrochlore nanoparticles. , 2014, Nanoscale.

[24]  Wenli Song,et al.  Dielectric relaxations and magnetodielectric response in BiMn2O5 single crystal , 2013 .

[25]  A. K. Tyagi,et al.  Observation of a new cryogenic temperature dielectric relaxation in multiferroic Bi7Fe3Ti3O21 , 2013 .

[26]  X. Meng,et al.  Dielectric responses and scaling behaviors in Aurivillius Bi6Ti3Fe2O18 multiferroic thin films , 2012 .

[27]  K. Page,et al.  New (Bi1.88Fe0.12)(Fe1.42Te0.58)O6.87 Pyrochlore with Spin-Glass Transition , 2011 .

[28]  Sergei V. Kalinin,et al.  Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. , 2010, Physical review letters.

[29]  M. Gingras,et al.  Magnetic Pyrochlore Oxides , 2009, 0906.3661.

[30]  J. Nino,et al.  Stability Phase‐Fields and Pyrochlore Formation in Sections of the Bi2O3–Al2O3–Fe2O3–Nb2O5 System , 2008 .

[31]  M. Maglione,et al.  Dielectric and polarization experiments in high loss dielectrics: A word of caution , 2008, 0805.4335.

[32]  Yun Liu,et al.  The disordered structures and low temperature dielectric relaxation properties of two misplaced-displacive cubic pyrochlores found in the Bi2O3–MIIO–Nb2O5 (M=Mg, Ni) systems , 2007 .

[33]  I. Levin,et al.  Phase formation, crystal chemistry, and properties in the system Bi2O3–Fe2O3–Nb2O5 , 2006 .

[34]  J. Nino,et al.  Phase Formation and Properties in the System Bi2O3:2CoO1+x:Nb2O5 , 2006 .

[35]  J. Greedan Frustrated rare earth magnetism: Spin glasses, spin liquids and spin ices in pyrochlore oxides , 2006 .

[36]  Youichi Murakami,et al.  Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4 , 2005, Nature.

[37]  L. Pardo,et al.  Dielectric and mechanoelastic relaxations due to point defects in layered bismuth titanate ceramics , 2001 .

[38]  C. Ang,et al.  Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in B i : S r T i O 3 , 2000 .

[39]  James F. Scott,et al.  Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics , 2000 .