Variational Methods, Multisymplectic Geometry and Continuum Mechanics

This paper presents a variational and multisymplectic formulation of both compressible and incompressible models of continuum mechanics on general Riemannian manifolds. A general formalism is developed for non-relativistic first-order multisymplectic field theories with constraints, such as the incompressibility constraint. The results obtained in this paper set the stage for multisymplectic reduction and for the further development of Veselov-type multisymplectic discretizations and numerical algorithms. The latter will be the subject of a companion paper.

[1]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[2]  Tudor S. Ratiu,et al.  2000], Reduction in principal fiber bundles: Covariant Euler-Poincaré equations , 2008 .

[3]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[4]  A. D. Lewis The geometry of the Gibbs-Appell equations and Gauss' principle of least constraint , 1996 .

[5]  Jerrold E. Marsden,et al.  Multisymplectic geometry, covariant Hamiltonians, and water waves , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Modeling of Constrained Systems , 1994 .

[7]  Steve Shkoller,et al.  A variational approach to second-order multisymplectic field theory , 2000 .

[8]  G. Magli,et al.  Relativistic elastomechanics as a lagrangian field theory , 1992 .

[9]  J. E. Marsden,et al.  The geometry and analysis of the averaged Euler equations and a new diffeomorphism group , 1999 .

[10]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[11]  J. Kijowski,et al.  A Symplectic Framework for Field Theories , 1979 .

[12]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[13]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[14]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[15]  C. Rodrigo,et al.  Stress–energy–momentum tensors in higher order variational calculus , 2000 .

[16]  Jerrold E. Marsden,et al.  Stress-Energy-Momentum Tensors and the Belinfante-Rosenfeld Formula , 1992 .

[17]  Steve Shkoller Geometry and Curvature of Diffeomorphism Groups withH1Metric and Mean Hydrodynamics , 1998 .

[18]  A. D. Lewis,et al.  Variational Principles for Constrained Systems: Theory and Experiment , 1995 .

[19]  Steve Shkoller,et al.  Second-order multisymplectic field theory: A variational approach to second-order multisymplectic , 1999 .

[20]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[21]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[22]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[23]  Peter E. Crouch,et al.  Optimal control, optimization, and analytical mechanics , 1998 .

[24]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[25]  S. Shkoller,et al.  THE VORTEX BLOB METHOD AS A SECOND-GRADE NON-NEWTONIAN FLUID , 1999, math/9910088.

[26]  P. Papadopoulos,et al.  A covariant constitutive description of anisotropic non-linear elasticity , 2000 .

[27]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[28]  J. Marsden The Hamiltonian formulation of classical field theory , 1988 .