On the computation of switching surfaces in optimal control: a Grobner basis approach
暂无分享,去创建一个
[1] Yakar Kannai,et al. Causality and Stability of Linear Systems Described by Partial Differential Operators , 1982 .
[2] H. Hermes,et al. Foundations of optimal control theory , 1968 .
[3] R. Kálmán. Identification of noisy systems , 1985 .
[4] David Mumford,et al. What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.
[5] S. Kahne,et al. Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.
[6] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[7] Allen R. Tannenbaum,et al. Robotic manipulators and the geometry of real semialgebraic sets , 1987, IEEE J. Robotics Autom..
[8] R. Kálmán. Realization of Covariance Sequences , 1982 .
[9] 임종인,et al. Gröbner Bases와 응용 , 1995 .
[10] G. Franklin,et al. Proximate time-optimal control of third-order servomechanisms , 1993, IEEE Trans. Autom. Control..